2 1) 2) 3) 4) 5) 6) Development of Second Generation Wireless In-Wheel Motor with Dynamic Wireless Power Transfer Hiroshi Fujimoto Takuma Takeuchi Kat

Similar documents
EV 1) 2) 3) Implementation and Experimental Validation of Control System for Ground Facilities and Electric Vehicles in Dynamic Wireless Power Transfe

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

パナソニック技報

. Fig. AC bus k k V I S Fig. 4. Fig. 3. The position of two lines The equivalent circuit model of line impedance Z(k) = V I S () Fig f [Hz], c[m

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

No EV 26 Development of Crash Safety Performance for EV Ichiro Kamimoto Masaki Motoki Masaki Ueno SKYACTIV engine HEV Hybrid Electric Ve

01 23A1-W-0012.indd

Fig. 1. Relation between magnetron anode current and anode-cathod voltage. Fig. 2. Inverter circuit for driving a magnetron. 448 T. IEE Japan, Vol. 11

1

Proposal of Driving Torque Control Method for Electric Vehicle with In-Wheel Motors Masataka Yoshimura (Yokohama National University) Hiroshi Fujimoto

D IEEJ Transactions on Industry Applications Vol.137 No.11 pp DOI: /ieejias Circuit Analysis and Characterization of Contactles

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

特-3.indd

AD8212: 高電圧の電流シャント・モニタ

JFE(和文)No.4-12_下版Gのコピー

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

EV Fig.. Contactless power transfer system. (a) Single-sided winding transformer. Fig. 2. Detailed equivalent circuit. x 0, x, x 2 r 0 r, r 2 C P R L

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

No SKYACTIV TECHNOLOGY 8 Development of the i-eloop Masayoshi Takahashi Tatsurou Takahashi Yoshimasa Kitaki Takeharu Yamashita Hir

DC-DC Control Circuit for Single Inductor Dual Output DC-DC Converter with Charge Pump (AKM AKM Kenji TAKAHASHI Hajime YOKOO Shunsuke MIWA Hiroyuki IW

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Vol.53 No (July 2012) EV ITS 1,a) , EV 1 EV ITS EV ITS EV EV EV Development and Evaluation of ITS Information Commu

SICE東北支部研究集会資料(2012年)

燃焼圧センサ

news

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

MD ,RM ,VT Aircraft Yaw-rate Suppression Method Using Driving Force Control by Electrically Driven Wheel for One-wheel Landing Tosh

<8B5A8F70985F95B632936EE7B22E696E6464>

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo


96R22J NN396AEVB

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

32R22J NN332AEVB

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ



2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

untitled

Unidirectional Measurement Current-Shunt Monitor with Dual Comparators (Rev. B

音響部品アクセサリ本文(AC06)PDF (Page 16)

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

OPA277/2277/4277 (2000.1)

F yr F yf l r γ r γ β l f γ δ f Y X Fig.3 Bicycle model of vehicle dynamics. Table. ehicle specification. ehicle mass M 854 kg Wheelbase l.7 m Distanc

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

OPA134/2134/4134('98.03)

2007-Kanai-paper.dvi

System to Diagnosis Concrete Deterioration with Spectroscopic Analysis IHI IHI IHI The most popular method for inspecting concrete structures for dete

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.,,,, E-ma

AFO AFO 4 2.3AFO 5 3 AFO 3.1 AFO

What moves your world

プラズマ核融合学会誌11月【81‐11】/小特集5

原稿.indd

untitled

Fig.2 Optical-microscope image of the Y face-cross sec- tion of the bulk domain structure of a 0.4-mm-thick MgO-LiNbO3 crystal after chemical etching.

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

ワイヤレス給電技術の開発 Development of Wireless Power Transmission 平野圭蔵 小林 茂 堀内雅城 Keizo Hirano Shigeru Kobayashi Masaki Horiuchi 大西喬之集要 須田 保 Takayuki Onishi Tamo

VHDL-AMS Department of Electrical Engineering, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan TOYOTA Motor Corporation, Susono, Shizuok

FLA Brochure.indd

Nano Range Specification Stable & Stable Telescopic Resonators Model Nano S Nano S Nano S Nano S Nano L Nano L Nano L Nano L Nano L Nano L Nano L 130-

WMN Wi-Fi MBCR i

資料1-3

LM A High Efficiency Synchronous Switching Regulator (jp)

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

pc725v0nszxf_j

パナソニック技報

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

D IEEJ Transactions on Industry Applications Vol.133 No.3 pp DOI: /ieejias DC-DC Principle of Surge Voltage of a Rectifier in I

untitled

Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S

LM Watt Stereo Class D Audio Pwr Amp w/Stereo Headphone Amplifier (jp)

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

橡最終原稿.PDF

<95DB8C9288E397C389C88A E696E6462>

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

XFEL/SPring-8

Fig.l Music score for ensemble Fig.Z Definition of each indicator Table I Correlation coefficient between hitting lag variation /,(n) and hitting cycl

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

LM mA 低ドロップアウト・リニア・レギュレータ

Transcription:

2 1) 2) 3) 4) 5) 6) Development of Second Generation Wireless In-Wheel Motor with Dynamic Wireless Power Transfer Hiroshi Fujimoto Takuma Takeuchi Katsuhiro Hata Takehiro Imura Motoki Sato Daisuke Gunji The authors have developed Wireless In-Wheel Motor (W-IWM) to solve power-lines disconnection problem of In-Wheel Motor (IWM) radically. In this paper, the advanced system of W-IWM (W-IWM2) is proposed. This system has capability of Dynamic Wireless Power Transfer (D-WPT) on its wheel-side. D-WPT technology can drastically extend driving range of electric vehicles. In addition, Lithium-ion Capacitor (LiC) is installed in wheel-side of the W-IWM2. LiC can effectively charge regenerative breaking energy. This paper discussed the development of the W-IWM2. The experimental results show the effectiveness of W-IWM2. KEY WORDS: EV and HEV systems, Energy control system, Dynamic wireless power transfer (A3) 1. (EV) EV In-Wheel Motor: IWM IWM (1) IWM - (W-IWM: Wireless In-Wheel Motor) (2) W-IWM 3.3 kw 94.3% (3) EV (4) IWM (5) EV IWM IWM W-IWM2 1)2)3)4) (277-8561 5-1-5) 5) ( ) 236-4 3-8 6) ( ) (251-851 1-5-5) Fig. 1 Test vehicle with W-IWM2. 2. IWM 2.1. EV IWM IWM 1) 2) IWM 3) W-IWM2 Table 1 2 4 EV

Table 1 Specification of the test vehicle Max. motor power 12 kw Max. motor torque 76.4 Nm Reduction ratio 4.47 Number of motors 2 (4) Total power 24 kw (48 kw) Total wheel torque 672 Nm (1344 Nm) Chassis-side Wheel-side Power conversion circuit Reduction gear integrated HUB bearing unit for dynamic WPT Electric motor Energy storage LiC Fig. 3 Circuit configuration of the W-IWM2. Fig. 2 Configuration of the W-IWM2. 2.2. W-IWM2 W-IWM2 Fig. 1 W-IWM2 Fig. 2 2 IWM 1 mm IWM 1 mm W-IWM2 3 1) IWM 2) IWM 3) IWM 3) (2) W-IWM1 2 W-IWM2 Fig. 3 W-IWM2 (6) SS(Series-Series) 85 khz W-IWM2 - IWM - IWM 2 (2) W-IWM1 - IWM (Dynamic Wireless Power Transfer D-WPT) AC/DC IWM AC/DC IWM Table 2 Target specification of the W-IWM2 circuit (designed value). WPT power from Road to IWM WPT power between Chassis and IWM Number of LiCs Total capacitance of LiCs Operation voltage of LiCs 9 kw > 12 kw 12 series 125 F 28.8-43.2 V W-IWM2 IWM (Lithium-ion Capacitor LiC) LiC DC/DC IWM IWM 1) 2) 3) LiC 4) 4 W-IWM2 Table 2 3. 3.1. (7) 1) 2) 1) EV 2) EV

Inverter Inverter Inverter Grid AC/DC DC bus Fig. 4 Configuration of dynamic WPT. Fig. 6. Inverter output voltage current Search mode WPT mode Search mode Threshold level Fig. 5 Vehicle detection operation. Time Time 2) Fig. 4 AC/DC DC 1 3.2. (8) SS (8) ON/OFF (8) 3 3 EV 3 Fig. Fig. 7 Arrangement of the road coils. 5 1ms 1W 3.3. Fig. 6 1.5 m x.5 m Fig. 7 1.6m 6 4. W-IWM2 IWM W-IWM2 4.1. IWM IWM LiC State of : SOC IWM P L = P WPT + P LiC + P DWPT (1) P L P WPT -IWM P LiC DC/DC LiC P DWPT P WPT > IWM

Drive Onboard battery LiC E-motor Dynamic WPT Fig. 8 Block diagram of W-IWM2. Power grid (a) With D-WPT. P WPT < IWM P LiC > LiC P LiC < LiC 3 LiC SOC v LiC 4.2. (1) LiC DC/DC v DC LiC LiC LiC v DC LiC P LiC (1) 4.3. LiC SOC (1) IWM AC/DC AC/DC P WPT AC/DC duty IWM (1) P L P DWPT P WPT LiC P LiC LiC SOC LiC SOC LiC LiC IWM Fig. 8 (1) 4.4. Fig. 9 3 Onboard battery Onboard battery Fig. 9 Power supply (b) Without D-WPT. (c) Braking. Drive LiC E-motor Discharge Regeneration LiC E-motor Typical operation of the W-IWM2. (1) Fig. 9(a) IWM LiC IWM LiC LiC SOC v LiC (2) Fig. 9(b) LiC SOC LiC SOC (3) LiC LiC LiC SOC

Road-side inverter Chassis-side converters 94 92 Position 1 Position 2 Position 3 IWM-side coil Load Efficiency [%] 9 88 86 (a) Bench test setup. 3 1 2 (b) IWM-side coil position Fig. 1 Bench test setup. W-IWM2 IWM LiC 5. 5.1. (1) IWM Fig. 1(a) PRK6-25 89 khz IWM IWM Myway plus pcube IWM Nwetons4th PPA552 DC to DC IWM IWM Fig. 1(b) 1 3 1mm 1 2 3 (2) Fig. 11 1 2 3 3 86% 84 2 4 6 8 1 Transmit power of D WPT [kw] Fig. 11 Efficiency measurement results. Table 3 Efficiency measurement result on the test bench (from Road to IWM). IWM-side coil position Position 1 Operation frequency 89 khz Estimated mutual inductance 37. µh Road-side DC input voltage 448.7 V IWM-side DC-link voltage 451.6 V Road-side DC input 8.196 kw IWM-side DC-link input 7.396 kw DC to DC transmission efficiency 9.24 % IWM Table 3 8.196 kw 9.24 % 5.2. (1) W-IWM IWM 1.6 m 3 3.2 3 duty 4µs 1 ms 12 km/h 1 ms 3.33 cm Myway plus pcube DC2V 5 V SOC 38 V (2) Fig. 12 Fig. 12(a)(b) W-IWM2 Fig. 12(d) IWM 5.5

Torque command [Nm] D WPT coil current [A rms ] 5 4 3 2 1 2 4 6 8 1 12 8 6 4 2 (a) Torque command. 2 4 6 8 1 12 (d) IWM-side D-WPT coil current. Vehicle velocity [km/h] LiC current [A] 14 12 1 8 6 4 2 2 4 6 8 1 12 8 6 4 2 2 4 6 (b) Vehicle velocity. 8 2 4 6 8 1 12 Fig. 12 (e) LiC current. Vehicle test results. DC link voltage [V] 56 54 52 5 48 46 measured reference 44 2 4 6 8 1 12 current [A pk ] 4 3 2 1 (c) DC-link voltage. 2 1 1 2 (f) current 3 Fig. 12(c) IWM Fig. 12(e) LiC LiC vlic = Fig. 12(e) LiC LiC Fig. 12(f) 2.5 1 7 W 3.8 kw W-IWM2 6. IWM W-IWM2 IWM LiC SOC ( A:2624961) JST CREST JPMJCR15K3 SINTEF Energy Research Giuseppe Guidi ( 1 ) S. Murata: Innovation by in-wheel-motor drive unit, Vehicle System Dynamics, International; journal of Vehicle Mechanics and Mobility, 5:6, pp.87 83 (212) ( 2 ), 215, S268, pp. 1395 1398 (215) ( 3 ) Giuseppe Guidi, D, Vol. 137, No.1, pp. 36 43 (217) ( 4 ) A. Kawamura, G. Guidi, Y. Watanabe, Y. Tsuruta, N. Motoi, and T. W. Kim: Driving Performance Experimental Analysis of Series Chopper Based EV Power Train, Journal of Power Electronics, Vol.12, No.6, pp.992 12 (213) ( 5 ) H. Fujimoto and S. Harada: Model-based Range Extension Control System for Electric Vehicles with Front and Rear Driving-Braking Force Distributions, IEEE Transaction on Industrial Electronics, pp.3245 3254 (215) ( 6 ) A.Kurs, A. Karalis, R. Moffatt, J.D. Jonnopoulos, P. Fisher, and M.Soljacic: Wireless Power Transfer via Strongly Coupled Magnetic Resonances, Science Expression on 7 June 27, Vol.317, No.5834, pp.83 86 (27) ( 7 ) C. C. Mi, G. Buja, S. Y. Choi, and C. T. Rim, Modern Advances in Wireless Power Transfer Systems for Roadway Powered Electric Vehicles, IEEE Transaction Industrial Electronics., vol. 63, no. 1, pp. 6533 6545 (216) ( 8 ) D. Kobayashi, T. Imura, H. Fujimoto and Y. Hori: Sensorless Vehicle Detection Using Voltage Pulses in Dynamic Wireless Power Transfer system, Electric Vehicle Symposium & Exhibition 29 EVS29 (216) ( 9 ), D, Vol. 134, No5, pp. 564 574 (214) (1), /, SPC-17-17, MD-17-17, pp.33-38 (217)