x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

Similar documents
ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

LLG-R8.Nisus.pdf

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

液晶の物理1:連続体理論(弾性,粘性)

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

meiji_resume_1.PDF

gr09.dvi

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

( )

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

³ÎΨÏÀ

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

本文/目次(裏白)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

untitled

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta



II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2011de.dvi

基礎数学I

Gmech08.dvi

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

振動と波動

高知工科大学電子 光システム工学科

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

ohpr.dvi

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

成長機構

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x


II III II 1 III ( ) [2] [3] [1] 1 1:

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

物性物理学I_2.pptx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

Korteweg-de Vries

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

The Physics of Atmospheres CAPTER :

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

QMI_09.dvi

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

PDF

QMI_10.dvi

chap03.dvi


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

1

QMII_10.dvi

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

untitled


I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Morse ( ) 2014


陦ィ邏・2

Note.tex 2008/09/19( )


(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

TOP URL 1

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

30

Erased_PDF.pdf

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

支持力計算法.PDF

Transcription:

x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I E E e ωκ x c

κ E ωκx/c e x κ α α 1/e xx I () x I (x) α I x I e x α α ωκ c 4πκ λ oth ote D J t + B t EH DBJ J oth D t ote B t D E B H J E ε μ D ε ε E 1 B µ 1 µ H

ε μ ε μ 1/c ε ε ε + iε μ EH oth iωε ε E ote H iωµ H ( N ε ) E E N ε N n iκε ε' iε" ε κ n ε nκ κ ε n nκ ε n ( ε ε ) + ( ) κ ε ε ε ε + ε 1 N i λ N i n κ λ ω π/5 4π nωx/c πnx/λ κωx/c πκx/λ κω x c iω t nx c i t i E ( x) E e e ( ) 6. 8 ω 3. 14 Ee e α 4πκ/λ ωκ x c 1. 56 I ( x) E ( x) Ee I e

I (x) / I () HB ot ote εε µ ω E ω ε c E ot ote gad dive E E ωn c E dive ( ω N c ) E ( ω ε c ) E ψ ψ 1 ψ ε 1 n E p K H ψ ψ 1 ε (n iκ) z E 1p ψ K K 1 H 1 E p H x y ε 1 n K E H p ε (n iκ) ψ ψ 1 ψ H p z K 1 E 1 H 1p E K x y K K K x 1x x K inψ K inψ K inψ 1 1 inψ inψ K K

n 1n K K1 ωn1 c K ωn c inψ inψ ( ωn c) ( ωn c) n n 1 1 ω K1z Kz K coψ ε 1 co ψ c ω Kz K Kx K Kx K K in ψ n n1 in ψ c ψ ψ 1 n 1 K K x K 1 K 1x n K x K ψ δ e i δ p I ( ε ) E R R K K ψ ψ p p e i δ p iδ e x y S

S Ex E co ψ, E y E S E1x E1 co ψ, E1 y E1 S Ex E co ψ, Ey E E 1 E ψ ψ 1 x n 1 E p ψ ψ 1 E 1 p E 1 p coψ 1 H H 1 ψ ψ 1 x H H 1 H y ψ E z y n E p coψ ψ E p coψ E p H ψ z y z E E coψ E coψ 1 H + H H S S S 1 y S H K ωµ E K E + E K E 1 ( ) K coψ + K coψ E K coψ K coψ E 1 p K K coψ K coψ coψ + K coψ K K coψ K coψ coψ + K coψ K K ψ ψ K inψ K inψ

K K ( inψ inψ ) coψ coψ in ψ in co in ψ ψ + ψ ψ ψ p K ( inψ inψ ) coψ + K coψ in ψ + in ψ co( ψ ψ )in ψ + ψ K K coψ inψ inψ coψ in ψ ψ K coψ K inψ inψ coψ in ψ + ψ + ( ) tan ψ ψ ( ) tan ( ψ + ψ ) Rp pp tan ( ψ ψ ) tan ( ψ + ψ ) in ψ ψ R in ψ + ψ ψ ψ π/ tan R p ψ ψ ψ p K K K K p coψ in ψ K coψ + K K K in ψ K K K coψ in ψ K coψ + K K in ψ N 1 N K N N N N p 1 1 coψ in ψ ε coψ ε 1 ε ε 1 in ψ N coψ + N1 N N1 in ψ ε coψ + ε1 ε ε1in ψ N N N 1 1 coψ in ψ ε1 coψ ε ε 1 in ψ N1 coψ + N N1 in ψ ε1 coψ + ε ε1in ψ N ε N N1 N N1 coψ in ψ ε coψ ε1 ε ε1in ψ Rp N + N1 N N1 coψ in ψ ε coψ + ε1 ε ε1in ψ N1 N N1 coψ in ψ ε1 coψ ε ε1in ψ R N1 + N N1 coψ in ψ ε1 coψ + ε ε1in ψ

N 1 in i R pr R p n R R p R pr N i1. R pr R p R p R p R R p R pr ψ ψ 1 $ $ K K N N $ p $ K + K N + N ε ε1 ε + ε1 N i N n iκ

N $ n i 1 R i N + + κ 1 n + i + exp ( θ ) 1 κ 1 R θ R ε 1 ( 1 n) + κ ε + 1 1+ n κ + κ θ tan 1 n + κ 1 1 R n 1+ R R coθ R inθ κ 1 + R R coθ Z 1 Z $ Z Z 1 Z1 + Z ε μ Z µ ε μ ε ε 1 $ ε ε1 ε + ε1 p co ψ ψ i i ( + ) exp ( ) tanψ exp ( ) co ψ ψ p p ψ Δ δ p δ p ψ Δ ΨΔ ε' ε'' nκ ( ) in ψ tan ψ co ψ in ψ in ε 1+ in ψ co in ψ tan ψ in 4ψ in ε 1+ in ψ co + in ψ ε' ε'' nκ n ε + ε κ ε ε ε ε + ε ΨΔ

ω ω ω f(ω) f'(ω) if"(ω) f'(ω) f"(ω) π f ( ω) ω ( ω) π f xf ( x) dx x ω ( x) f dx x ω f(ω) f"(ω) f'(ω) f ( ω ) 1 π x + ω d ln x ω dx f x dx ln x + ω d x ω f'(ω) f"(ω) x x ω dx f ( x ) x ω ω ε' ε'' (ω) R 1/ (ω) e iθ (ω) ln (ω) (1/) lnr (1/) lnr f'(ω) iθ f"(ω) θ ω ω π ln R x x ω R (ω) θ (ω) R (ω) θ (ω) n κ f (x) x x f x x f' ( x) f' (x)f" ( x) f" (ω) iπ f x f x φ dx x ω f (ω) f' (ω) if"(ω) ω ω f ω t t Im (x) x ω Re (x) x

E u u m * τ m d u d + ( m τ ) du dt qe Eu e iωt Nqu D ε ε E ε E ε 1 Nq m ε ω 1+ i ωτ 1 ω ω ω i τ { } + { } ω p N 1/ q /m * ε ε ε' iε'' ε 1 ω ω + 1 τ ε ω ωτ ω + 1 τ hω p h τ ω ω (ω p 1/τ ) 1/ n ε 1/ hω p ε ''

ε'ε'' R hω p h τ hω hω ε'ε'' ε'' ε''/3 ε' hω ε '' E F E F E F E E F u m * τ m d u dt + ( m τ ) du dt + m ω u qe ω Eu e iωt u N b N bqu

ε 1 ω ω + ω τ ω b i ( ) ω b N bq /m * ε { } ( ) + ( ) ε 1 ω ω ω ω ω ω τ b {( ) + } ε ω ω τ ω ω ω τ b hω h τ ε " ε ' E F ε'ε'' k hω hω p h τ hω ε ' ε ' h τ hω p hω ε'ε'' ε '' ε ' R hω ω

ε ε ' ω ω p' ( ) ω ω ε 1 τ 1 hω p h ω p u M d dt u + Mω u qe M q ω N Nqu d dt Nq + ω E M e iωt ikx Nq ( ω ω ) + E M Nq 1 ε 1+ 1 ε E Mε ω ω ω ω i/τ K oth D iω ε E + t ote B iωµ H t H ω + ( ω c K ) E

ω ω ω Nq M ω c K 4 Nq ω ω + c K Mε ε ω + ωc K ε ω K Nq ω ω ωup ω + Mε ω ω up ω ω ck K