,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB

Similar documents
cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq


Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

QMI_10.dvi

untitled


II

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

IA

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x


7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

untitled

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

福大紀要 02730816/教育科学 太田 氏家

main.dvi

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

pdf

第1章 微分方程式と近似解法

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

06-...t.Q V4.qxd

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

QMI13a.dvi

( ) ,

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

LNSC2010_HK.dvi

LLG-R8.Nisus.pdf

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

‘¬”R.qx

ニュース和歌山-5月23日1面

30

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

総研大恒星進化概要.dvi

中央大学セミナー.ppt

I ( ) 2019

all.dvi

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

/27 (13 8/24) (9/27) (9/27) / / / /16 12


構造と連続体の力学基礎



untitled

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

untitled

01_教職員.indd


inflation.key

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

( )

The Physics of Atmospheres CAPTER :


ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

cat A

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

expander graph [IZ89] Nii (NII) Lec. 11 October 22, / 16

Mott散乱によるParity対称性の破れを検証

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =


1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π


nenmatsu5c19_web.key

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

CMB and DM (Cosmic Microwave Background and Dark Matter) ~ ~

2357

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

Ł\”ƒ53_4C

W Z Large Hadron Collider LHC ATLAS LHC ATLAS Higgs 1


untitled

KT

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.


Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2


Untitled

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

untitled

Einstein ( ) YITP

Microsoft Word - 11問題表紙(選択).docx

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

untitled

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

2009 June 8 toki/thermodynamics.pdf ) 1

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

A

Transcription:

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,,. 1 3 2 3 2.1............................................. 3 2.2 CMB............................................... 5 2.3........................................... 7 2.4............................................. 7 2.5 Hubble...................................... 8 3 9 3.1................................ 9 3.2.............................................. 9 3.3............................................. 10 3.4........................... 10 1

4 11 4.1..................................... 11 4.2......................................... 12 4.3............................................. 12 [1] S, 2008..,.,.. [2],, 1995. [3] I, II, 2008.. [4] Wikipedia,, http://ja.wikipedia.org/wiki/%e3%83%93%e3%83%83%e3%82%b0%e3%83%90%e3%83%b3..,. 2

1,,. (steady state cosmology) 1948 Fred Hoyle, Thomas Gold, Hermann Bondi.,. * 1 (big bang cosmology) Georges-Henri Lemaitre, George Gamow.,,. * 2,., (cosmic microwave background radiation). CMB..,,,.,..... (Big Bang), 1949 BBC The Nature of Things this big bang idea.,. 2 2.1 2.1.1.,,,,.,.,,.,, *1,.,,.,. *2,.,.,.,,. 3

, *3.,,.,,,,. *3,,,. 4

2.1.2 Maxwell,.,.,.,.,. Albert Einstein,, *4.,, *5.,,.,,. (photon).,. 2.2 CMB 2.2.1 Planck,.,. Max Planck, Planck *6., Planck,.,,, Planck. du dλ = 16π2 c 1 λ 5 e 2π c/kt λ 1 du dω = ω 3 π 2 c 3 e ω/kt 1,., λ. (2.1) (2.2) *4 Einstein,,., 20. *5, 600[nm] 60W, 1 10 20., 60[W(J/s)] Planck h 6.6 10 34 [J/s],. *6, Max Karl Ernst Ludwig Planck.. Planck h 6.6 10 34 [J/s], ν, hν.. h, h/2π Dirac., Planck 2π 1,. 5

2.2.2 1964,,., 7.35[cm].,., (M31),,., (cosmic microwave background radiation). CMB, Fig1 Planck Plank,.,, 3[K]. 2.2.3,., Einstein,,.,.,,.,,,,.,.,,.,,.,,., 2.2.4 3[K].,,,. 1[K] 2 282.9[ / ], 3[K] 55 [ / ]., 1000 6

0.03 6., 1 1 200., 1 10.,.,,. 2.3,,.,.,,.,, *7. E = m 0 c 2 + (Kinetic term) (2.3),.,,.,.,. 2.4,,. atom = a-tom = -,,, elemental particle. 2.4.1 (quark)., (baryon)., (flavor) *8., u, d, c, s, t, b.. e, Q +(2/3)e (1/3)e,., family, generation, Table 1 *9.. *7 E = mc 2,., E 2 = m 2 c 4 + p 2 c 2. p.. *8,, *9,. 7

,,. antiparticle., (electron) (positron).,,.,.., q q, q q. (meson). (hadron).,. u Table1 (q) Q + 2 3 e u 1 3 e Table2 u d d c c s s u u d p+ u d d n t t b b ū u π 2.4.2,,., (lepton). e ν e, µ ν µ.,.. 2.5 Hubble CMB, CMB, Hubble. Hubble,,.,,,. Hubble 8

. Hubble (v) (R)., H. v = HR (2.4) H 138, 137., Hubble,.,,.,. 3 3.1,.,.,.,,.,.,. 3.2,.,,,.,,.,,..,, (2.3) Table3 [10 K] 0 0 5.930 1226.2 π 0 1556.2 π ± 1619.7 10888 10903,,,,., 9

., Boltzman, 1.38 10 23 [J/K]., 2,. Table 3. 3.3,, 10 11 [K](1000 ).,. 1000,,,,.,,,.,,.,,. + + + +,,.,,.,..,, 1000.,, * 10.,,,,.,,.,,., Planck. 3.4, (3000[K]).,,.,,.,.,, *10,. 10

,..., Planck.., CMB., CMB,. 4,,,.,,,. * 11 4.1, ω.,.,, ω.,.,,.,,.,.,., E ho, v(= dx/dt), m, x, k(= mω 2 ),. E ho = 1 2 mω2 x 2 + 1 2 mv2. (4.1), v(= dx/dt) x.. E em, E, B,. E em = 1 2 ϵ 0E 2 + 1 2µ 0 B 2. (4.2) (4.2),, E B.,. E x, *11,....,, [3]. 11

B v(= dx/dt).,.,, Newton,,.,, * 12. *13 4.2, a(t),. t = 0, t = T., c/a(t) * 14,. T 0 c/a(t)dt t = t, t = T + T., T + T t c/a(t)dt., T, t t a(0) = T a(t ). t, T. 4.3, A, A., A., A 3. (2.1),, λ A 1/A, (4.3) du (A 3 V ) A = A 3 V A 16π2 c (λ /A) 5 d(λ /A) e 2π c/kt (λ /A) 1 *12, (renormalization). ω. *13. *14,.,. 12

... du = 16π2 c dλ λ 5 e 2π c/k(t/a)λ 1, (4.4) T 1/A. CMB, 2.73[K], 3000[K], A 3000/2.73 1000., 1000. (4.4) 13