takei.dvi

Similar documents
z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

第5章 偏微分方程式の境界値問題

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

構造と連続体の力学基礎

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

実解析的方法とはどのようなものか

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

I , : ~/math/functional-analysis/functional-analysis-1.tex

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

Microsoft Word - 信号処理3.doc

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))



: 1g99p038-8

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

C 1 -path x t x 1 (f(x u), dx u ) rough path analyi p-variation (1 < p < 2) rough path 2 Introduction f(x) = (fj i(x)) 1 i n,1 j d (x R d ) (n, d) Cb

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

webkaitou.dvi

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ



Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

all.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

第1章 微分方程式と近似解法

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

Kullback-Leibler

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

2 2 L 5 2. L L L L k.....

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

2

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Grushin 2MA16039T

Powered by TCPDF ( Title 第 11 講 : フィッシャー統計学 II Sub Title Author 石川, 史郎 (Ishikawa, Shiro) Publisher Publication year 2018 Jtitle コペンハーゲン解

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

all.dvi

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Note.tex 2008/09/19( )

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

meiji_resume_1.PDF

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A


f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

all.dvi

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


SFGÇÃÉXÉyÉNÉgÉãå`.pdf

Fuchs Fuchs Laplace Katz [Kz] middle convolution addition Gauss Airy Fuchs addition middle convolution Fuchs 5 Fuchs Riemann, rigidity


微分方程式の解を見る

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

J. Bernoulli 694 Riccti dy dx + ψy + φy + χ = (ψ, φ, χ x ) Leibniz Riccti 73 Leibniz Bessel ( )Bessel. 738 J. Bernoulli. 764 Novi Comm. Acd. Petrop. L

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

Lebesgue Fubini L p Banach, Hilbert Höld

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

gr09.dvi

Transcription:

0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx

Q(x), f(x) x = 0 u(x) v(x) = u(x) (a+bx) a = b = 0 Q(x) = q n x n, f(x) = f n x n, u(x) = u n x n Taylor n(n 1)u n x n 2 q j x j u k x k = f n x n. n 2 j 0 k 0 n 0 (3) (n + 2)(n + 1)u n+2 = q j u k + f n (n = 0, 1, 2,...). j+k=n a = b = 0 u 0 = u 1 = 0 (3) u 2, u 3,... u 2 (4) d 2 u dx Q(x)u = 2 u(x)2 + f(x), du u(0) = a, (0) = b. dx (4) {u n } (3) (5) (n + 2)(n + 1)u n+2 = j+k=n q j u k + j+k=n u j u k + f n (n = 0, 1, 2,...). (5) {u n } (2) (4) u(x) = u n x n (6) du j dx = f j (x, u 1, u 2,..., u n ) (j = 1,..., n), u = t (u 1,..., u n ), f = t (f 1,..., f n ) (7) du dx = f(x, u) 2

Theorem 1.2. (Cauchy) f(x, u) C n+1 Ω (x 0, a) Ω (8) u(x 0 ) = a C n (7) x 0 Example 1.1 1.2 Taylor C Theorem 1.2 C C k (9) du dx = f(x, u), u(x 0) = a R n Theorem 1.3. f(x, u) (x 0, a) R n+1 Ω f(x, u) u Lipschitz L (10) f(x, u) f(x, v) L u v (x, u), (x, v) Ω R n+1 (9) C 1 x 0 (9) (11) u(x) = a + x x 0 f(t, u(t))dt 3

Picard u 0 (x) a, (12) x u n+1 (x) = a + f(t, u n (t))dt n = 0, 1,... x 0 Theorem 1.3 f(x, u) Lipschitz f(x, u) Theorem 1.4. f(x, u) (x 0, a) R n+1 Ω (9) C 1 x 0 Theorem 1.4 Cauchy a + f(x 0, a)(x x 0 ), x [x 0, x 1 ] (13) u(x) = u(x 1 ) + f(x 1, u(x 1 ))(x x 1 ), x [x 1, x 2 ] u(x m 1 ) + f(x m 1, u(x m 1 ))(x x m 1 ), x [x m 1, x m ] x 0 < x 1 < < x m x 0 [x 0, x m ] 2 2.1 m ( ) (14) P x, u(x) := ( ) α a α (x) u(x) = f(x) x x α m α = (α 1,..., α n ), α = α 1 + + α n, ( ) α ( ) α1 ( x α = x α 1 1 xαn n, = x x 1 x n ) αn 4

(14) P (x, / x) m (14) (15) p(x, ξ) = α =m a α (x)ξ α (14) x 0 (16) p(x 0, ξ 0 ) 0 ξ 0 (16) ξ 0 (1, 0,..., 0) (16) p(x 0, (1, 0,..., 0)) 0. (14) x = x 0 x 1 x 0 (16) a (m,0,...,0) (0) 0 a (m,0,...,0) (x) x = 0 (14) (17) ( x 1 ) m u(x) + m 1 j=0 ν m j ( ) j ( ) ν a j,ν (x) u(x) = f(x). x 1 x x = (x 2,..., x n ) ν = (ν 2,..., ν n ) n 1 Cauchy Theorem 1.2 Theorem 2.1. (Cauchy-Kowalevski) (17) a j,ν (x) f(x) x = 0 x = (x 2,..., x n ) C n 1 m g k (x ) (k = 0,..., m 1) ( ) k u (18) (0, x ) = g k (x ) (k = 0,..., m 1) x k 1 (17) x = 0 (16) 5

2.2 2 u + 2 u x 2 1 x 2 2 2 u 2 u x 2 1 x 2 2 u 2 u x 1 x 2 2 = 0, = 0, = 0. x 1 x 1 > 0 x 1 < 0 20 C f(x) (14) u(x) x 0 (14) x 0 1950 Ehrenpreis Malgrange a α (x) Hörmander Acta Math., 94(1955), 161-248 Theorem 2.2. (14) x = x 0 p(x, ξ) (19) p(x 0, ξ) = 0, ξ 0 = ( ξ p)(x 0, ξ) 0 ξ = ( / ξ 1,..., / ξ n ) p(x, ξ) (14) x 0 (14) 6

(16) (16) p(x, ξ) Theorem 2.2 Hörmander p(x, ξ) (20) {Re p, Im p}(x, ξ) = 1 {p, p}(x, ξ) = 0 2i Re p, Im p p p p {f, g} f g Poisson n ( f g (21) {f, g}(x, ξ) = f ) g ξ j x j x j ξ j j=1 Hörmander (20) (14) Hans Lewy 3 3.1 Hans Lewy Hans Lewy 1957 Ann. of Math., 66(1957), 155-158 (22) u x 1 i u x 2 + 2i(x 1 + ix 2 ) u x 3 = φ (x 3 ). Theorem 3.1. (Lewy) (22) φ(x 3 ) C (22) C 1 φ(x 3 ) x 3 = 0 Theorem 3.1 (22) φ C (22) C 1 Theorem 3.1 (22) Remark 3.2. (22) C 2 Cauchy- Riemann Lewy (22) 7

Lewy (22) p(x.ξ) = ξ 1 iξ 2 + 2i(x 1 + ix 2 )ξ 3 {Re p, Im p} = 4ξ 3 0 Hörmander Lewy Hörmander (20) 3.2 Nirenberg-Treves Lewy Hörmander (23) p(x, ξ) = 0 = {Re p, Im p}(x, ξ) 0 Mizohata (24) u + ix j u 1 = f(x) x 1 x 2 j 0 j 1970 Nirenberg Treves Comm. Pure Appl. Math., 23(1970), 1-38, 459-509 Definition 3.3. (14) p(x, ξ) x = x 0 Re(ap) Im(ap) + p(x, ξ) x 0 (Ψ) Im(ap) (P ) a 0 a = 1 a = i Re p Re p Hamilton (25) dx j dt = (Re p) ξ j, dξ j dt = (Re p) x j (Re p)(x(t), ξ(t)) = 0 Mizohata (24) a = 1 Re p (x 1 (t), x 2 (t); ξ 1 (t), ξ 2 (t)) = (t + x 0 1, x0 2 ; 0, ξ0 2 ) x0 1, x0 2, ξ0 2 Re p Im p t Im p = ξ2 0(t + x0 1 )j j Poisson {Re p, Im p} Re p Hamilton Im p Hörmander (23) Re p Im p Im p Nirenberg Treves (Ψ) (P ) 8

Nirenberg-Treves (P ) (P ) 1960 (Ψ) p(x, ξ) = ( 1) m p(x, ξ) (P ) (Ψ) Nirenberg-Treves 1973 Beals-Fefferman (P ) (Ψ) 1978 Moyer 1981 Hörmander (Ψ) 1988 Lerner (Ψ) Dencker 2006 Nirenberg-Treves Dencker 2005 Clay (cf. http://www.claymath.org/research award/dencker/) Nirenberg-Treves 4 4.1 R n C n Ω C f(x) ( ) α (26) a α (x) u(x) = f(x) x α m C u(x) Ω Example 4.1. R 2 Ω 9

x 2 Ω 0 x 1 (27) u x 1 = 1 x 2 1 +. x2 2 1/(x 2 1 + x 2 2) Ω C Ω C (27) (27) (28) u(x 1, x 2 ) = 1 ( ) Tan 1 x1 + v(x 2 ) v(x 2 ) x 2 x 2 x 2 Ω C u(x 1, x 2 ) ε (29) u(ε, x 2 ) u( ε, x 2 ) x 2 x 2 = 0 C (28) v(x 2 ) (29) x 2 = 0 C (27) Ω C (27) Ω (27) x 1 x 1 (27) Ω (27) x 1 Ω x 1 Ω 10

4.2 (27) x 1 (30) a 1 (x) u + + a n (x) u = f(x) a j (x) x 1 x n (31) dx 1 dt = a 1(x),..., dx n dt = a n (x) (x 1 (t),..., x n (t)) (30) (x 1 (t),..., x n (t)) (32) d dt [u(x 1(t),..., x n (t))] = f(x 1 (t),..., x n (t)) (30) (31) (27) x 1 (31) (30) (26) 1970 (26) Fact 4.2. (26) u(x) Hamilton Fact 4.2 u(x) (x(t), ξ(t)) (x, ξ) x(t) x (26) u(x) x x 4.3 4.1 Example 4.1 x 1 (26) 4.1 (26) Ω 11

1. C a α (x) Ω p (26) Ω Duistermaat- Hörmander; Acta Math., 128(1972), 183-269 2. Ω p 3. Ω p Ω (26) Ω Suzuki; Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 11(1972), 253-258 Kawai-Takei; Adv. in Math., 80(1990), 110-133 3.2 [5], [6] Fourier C [4] References [1] 6 1994 [2] 1977 [3] 1965 [4] L. Hörmander: The Analysis of Linear Partial Differential Operators, Volume I-IV, Springer-Verlag, 1983-1985 Volume IV, Section 26. [5] M. Sato, T. Kawai and M. Kashiwara: Microfunctions and pseudo-differential equations, Lecture Notes in Mathematics, No. 287, Springer, 1973, pp. 265-529. [6] 18 1980 12