http : // ta/mathbio.html

Similar documents
E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

ver.1 / c /(13)

ẋ = ax + y ẏ = x x by 2 Griffith a b Saddle Node Saddle-Node (phase plane) Griffith mrna(y) Protein(x) (nullcline) 0 (nullcline) (

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

K E N Z OU

note1.dvi

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

( )


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

2017

<4D F736F F D2092B28DB882C982C282A282C42E646F63>


sakigake1.dvi

PDF

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

30 (11/04 )

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

lecture_rev3

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

IA

Contents 1 Jeans (

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2


untitled

š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

輻射の量子論、選択則、禁制線、許容線

B ver B

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4


Part () () Γ Part ,

Maxwell



December 28, 2018

Erased_PDF.pdf

ŠéŒØ‘÷†u…x…C…W…A…fi…l…b…g…‘†[…NfiüŒå†v(fl|ŁŠ−Ù) 4. −mŠ¦fiI’—Ÿ_ 4.1 −mŠ¦ŁªŁz‡Ì„v”Z

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

master.dvi

( ) ( )

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


Nosé Hoover 1.2 ( 1) (a) (b) 1:

読めば必ずわかる 分散分析の基礎 第2版

ú r(ú) t n [;t] [;t=n]; (t=n; 2t=n]; (2t=n; 3t=n];:::; ((nä 1)t=n;t] n t 1 (nä1)t=n e Är(t)=n (nä 2)t=n e Är(t)=n e Är((nÄ1)t=n)=n t e Är(t)=n e Är((n

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

K 1 mk(

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63>

Microsoft Word - GrCadSymp1999.doc

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論


Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

Ÿ ( Ÿ ) Ÿ šœš 100,000 10,000,000 10,000,000 3,250,000 1,000,000 24,350,000 5,000,000 2,500,000 1,200,000 1,000,000 2,960,000 7,000,000 1,500,000 2,200

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63>

<4D F736F F D2088CF88F589EF8E9197BF F690EC816A2E646F63>

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

(iii) x, x N(µ, ) z = x µ () N(0, ) () 0 (y,, y 0 ) (σ = 6) *3 0 y y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y ( ) *4 H 0 : µ


構造と連続体の力学基礎

š ( ) 27,315,969 () 12,730,389 j 990,990 j 13,721,379 () 54,000,000 j 6,336,275 j 5,000,000 j 10,181,806 j 9,679,530 30,000,000 j 3,091,200 j 10,000,0

p06.dvi

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

加速度センサを用いた図形入力

Microsoft Word - 99

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

genron-3

The Physics of Atmospheres CAPTER :


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

現代物理化学 1-1(4)16.ppt

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

構造と連続体の力学基礎

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

行列代数2010A

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

< F31332D8B638E FDA8DD E F1292E6A>

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V

Transcription:

2018 1 1 http : //www.f.waseda.jp/atsuko ta/mathbio.html

1 ( [1, 15]) 3 2 6 2.1 -.... 6 2.1.1............ 7 2.1.2... 7 2.1.3................. 8 2.1.4 (Enzyme Kinetics)......... 9 2.1.5 (quasi-steady state approximation) 12 2.1.6..... 14 2.1.7 (equilibrium approxmation)... 15 2.2................. 16 2.2.1 (competitive inhibition)... 17 2.2.2 (noncompetitive inhibition)... 18 2.2.3 (substrate inhibition)... 20 2.2.4 (uncompetitive inhibition)... 21 2.2.5... 22 2.2.6 (Hill equation)... 26 3 29 3.1 [6, 7, 15 17]... 31 3.1.1 1 - - [15]... 34 3.1.2 2 - - [8]... 38 3.1.3 2... 41 3.1.4... 41 3.1.5... 42 3.1.6.................... 45 3.1.7... 46 3.1.8 Hopf... 52 3.2 2... 55 3.2.1 Ca 2+ [13].................... 55 3.2.2 (ubstrate-depletion oscillation) [6] 58 1

3.2.3 - (Activetor-inhibiotr oscillation) [6] 64 3.3 3... 67 3.4............ 70 4 75 4.1................. 75 4.2 -Hodgkin-Huxley -......... 75 4.2.1... 75 4.2.2... 77 4.2.3 Hodgkin-Huxley............ 79 4.2.4 (Voltage-clamp method)... 81 4.2.5..................... 83 4.2.6 Hodgkin-Huxley... 86 4.3 4 Hodgkin-Huxley 2 -FitzHugh- Nagumo -........................ 90 4.3.1 Hodgkin-Huxley........ 90 4.3.2 FitzHugh-Nagumo... 92 2

1 ( [1,15]) ( ) 4 0 1 1 1+4 1=5 2 5+4 5 k n k n k = n k 1 +4n k 1 1 1 α n k n k 1 = αn k 1 1 t n t = n k n k 1 = αn k 1 t 0 dn dt = αn (1.1) n 0 t =0 n(0) = n 0 n = n 0 e αt (1.2) 3

1 (1.1) dn dt =(a bn)n (1.3) α = a bn a b (logistic equation) (1.1) n(0) = n 0 a bn 0 0 n(t) = n max 1+( nmax n 0 1)e at (1.4) n max = a/b (1.4) t n = n max n 0 n max (1.3) n dn dt =0 (a bn)n =0 n =0 n = n max n 0 (1.4) n = n max n max n 0 =0 (1.4) n =0 0 1 Malthus: 4

0 ( 1-1) (1.1), (1.3) (1.2), (1.4) n(0) = n 0 (1) 0 <n 0 < a 2b, (2) a 2b <n 0 < a b, (3) n 0 > a b t n n (1.3) (1.1) 5

2 2.1 - (AB)* エネルギー A+B Ea C 分子の状態 2.1: - (Michaelis-Menten equation) 1 1 [2] [3] 4 chapter 1 6

2.1.1 A+B k C (2.1) 2.1 A+B C (AB) (activation energy)e a 2 k = A exp( E a /RT ) (2.2) k (rate constant) (arrhenius equation) T A (frequency factor) 3 E a (2.2) ln k =lna E a R 1 T (2.3) ( ) A E a 2.1.2 (2.1) A, B [A], [B] C [C] k [A], [B] ( (law of mass action) ) 4 d[c] = k[a][b] (2.4) dt 2 [4] 1 3 3 [4] T (2.2) T 1/2 A 4 7

( 2-1) P (1) A+B+C k P (2) (3) (4) A+B k P+C A k P+C 2A k P 2.1.3 (reversible reaction) A+B k + k C (2.5) A d[a] dt =( ) (2.6) (equilibrium state) A 5 d[a] dt =0 (2.6) A,B,C [A] eq, [B] eq, [C] eq K k + k = [C] eq [A] eq [B] eq (2.7) 5 (steady state) 8

K (2.2) K ( 2-2) A P [A] eq (1) (2) (3) (4) A+B+C k + k P A+B k + k P+C A k + k P+C 2A k + k P ( 2-3) (2.2) 2.7?? 2.1.4 (Enzyme Kinetics) (ubstrate) (Enzyme)E (catalyst) (Product)P 2.2 [] ( [E] ) V( P ) 9

2.2:... (1) [] [] (2) [], E P +E k P+E V = d[p] dt = k[][e] [] [E] Michaelis Menten(1913) ( (Complex))C +E k +1 C k 2 P+E (2.8) k 1 [] (2.8) [] E 10

E - (Michaelis-Menten equation)(2.18) 2.1.7 Briggs Haldane (1925) (2.8) P 6 [] 0 [E] 0 C E 7 E C P (quasi-steady state) 8 2.1.5 - s =[],e=[e],c=[c],p=[p] ds dt = (2.9) de dt = (2.10) dc dt = (2.11) dp dt = (2.12) ( 2-4) V s 9 V = dp dt 6 7 2.1.6 [C] [] [C] [] 8 9 s ( s 0 ) 11

(2.12) c (2.10) (2.11) de dt + dc =0 dt (2.13) e + c = const e 0 (2.14) e 0 e c s 2 2.1.5 (quasi-steady state approximation) Briggs Haldane C C (2.11) dc dt =0 (2.15) (2.14) e c = e 0s s + K m (2.16) K m k 1 + k 2 k +1 (2.17) K m (Michaelis constant) V (2.12) (2.16) V = dp dt = k 2c = V maxs s + K m (2.18) V max = k 2 e 0 (2.18) - (Michaelis-Menten equation) 2.3(a) 2.1.4 V max s K m ( ) K m 12

Lineweaver-Burk ( 2.3(b)) V max, K m 10 1/V = s + K m V max s (2.19) =1/V max + K m V max 1/s (2.20) ( 2-4) - (2.18) - s = const., s, s (2.18) ( 2-5) - (2.18) Lineweaver-Burk (1/s 1/V ) Eadie-Hofstee (V/s V ) Hanes-woolf (s s/v ) (2.20) 2.3(b) 3 V 1/V V max V /2 max 1/V max K m/vmax K m s -1/K m 1/s 2.3: - (2.18) s V (a), 1/s 1/V (b). 10 13

2.1.6 (2.9) (2.12) 2 ds dt = k 1c k +1 s(e 0 c) (2.21) dc dt = k 1c k 2 c + k +1 s(e 0 c) (2.22) s e s 0 e 0 s 0 e 0 (2.23) (2.22) 11 12 s = s 0 σ c = e 0 χ k +1 e 0 t = τ (2.24) e 0 s 0 ϵ (2.25) α, κ ( 2-6 ) dσ dτ ϵ dχ dτ = αχ σ(1 χ) (2.26) = κχ + σ(1 χ) (2.27) (2.23) ϵ 0 (2.27) 0 χ c ( 2-6) α κ k 1, k +1, k 2, s 0 (2.26, 2.27) 11 s, c 12 k 1, k +1, k 2 14

2.1.7 (equilibrium approxmation) - E C ( (2.8) ) (2.7) K s = k 1 /k +1 13 se K s c =0 (2.28) c (2.14) V = dp dt = k 2c = V maxs s + K s (2.29) (2.18) K s K m 13 2.1.3 15

2.2 (inhibitor) (a) (c) (d) I P P E E E (b) E E I E E E I 2.4:. (a), (b), (c), (d). ( ) (competitive inhibition) (active site) (noncompetitive inhibition) (substrate inhibition) - (uncompetitive inhibition) - 16

2.2.1 (competitive inhibition) I +E k +1 k C 1 2 P+E k 1 I+E k +3 k 3 C 2 (2.30) s =[],e=[e],i=[i],c 1 =[C 1 ],c 2 =[C 2 ],p=[p] de dt = k 1c 1 k +1 se + k 2 c 1 k +3 ei + k 3 c 2 (2.31) ds dt = k 1c 1 k +1 se (2.32) di dt = k 3c 2 k +3 ie (2.33) dc 1 dt = k +1se k 1 c 1 k 2 c 1 (2.34) dc 2 dt = k +3ei k 3 c 2 (2.35) (free enzyme)e C 1 C 2 (2.31,2.34,2.35) de dt + dc 1 dt + dc 2 dt e 0 =0 (2.36) e + c 1 + c 2 = e 0 (2.37) C 1 C 2 dc 1 /dt = 0, dc 2 /dt =0 (2.34), (2.35), (2.37) e K i e 0 s c 1 = K m i + K i s + K m K i (2.38) K m e 0 i c 2 = K m i + K i s + K m K i (2.39) K m k 1 + k 2 k +1 K i k 3 k +3 17

P V = dp dt = k 2c 1 V max s = s + K m (1 + i/k i ) (2.40) V max k 2 e 0 ( 2-5) (2.40) s V 1/s 1/V ( 2-6) K m = k 1 /k +1 2.40 2.2.2 (noncompetitive inhibition) I +E k +1 E k 2 P+E k 1 I+E k +3 k 3 EI +EI k +1 k 1 EI (2.41) I+E k +3 k 3 EI E, EI, EI s =[],e=[e],i=[i],x=[e],y =[EI],z =[EI],p=[P] ė = k +1 se + k 1 x + k 2 x k +3 ie + k 3 y (2.42) ṡ = k +1 se + k 1 x k +1 sy + k 1 z (2.43) i = k +3 ie + k 3 y k +3 ix + k 3 z (2.44) ẋ = k +1 se k 1 x k 2 x k +3 ix + k 3 z (2.45) ẏ = k +3 ie k 3 y k +1 sy + k 1 z (2.46) ż = k +1 sy k 1 z + k +3 ix k 3 z (2.47) 18

e 0 e + x + y + z = e 0 (2.48) (2.41) ( 2.5) E K i EI K s E K i K s EI 2.5:. E.K s, K i. EI E EI E EI E. E es K s x =0 (2.49) ei K i y =0 (2.50) ys K s z =0 (2.51) xi K i z =0 (2.52) K s k 1 k +1 K i k 3 k +3 19

e x, y, z s, i x = e 0K i K i + i s K s + s p V max = k s e 0 (2.53) V = dp dt = k 2x V max = (1 + i/k i ) s s + K s V max = (1 + i/k i ) s/k s 1+s/K s (2.54) ( 2-6) (2.54) 2.3 2.2.3 (substrate inhibition) E E +E k +1 E k 2 P+E k 1 +E k +3 k 3 E V = K s k 1 k +1 K ss k 3 k +3 V max s K s + s + s 2 /K ss (2.55) 20

( 2-7) s V 2.2.4 (uncompetitive inhibition) I E E +E k +1 E k 2 P+E k 1 I+E k +3 k 3 EI ( 2-8) K s k 1 k +1 K m = k 1 + k 2 k +1 K i k 3 k +3 s V 21

2.2.5 2.3-2.6 ( ) - ( ) (allosteric effector) (allosteric modifier) ( 2.2.2) 14 n n ( ) (allosteric efffect) (cooperative) (activator) (inhibitor) ( 2.7 ) 14 allo stere 22

V V max s 2.6:. 23

2.7:.(a). 1 1 2.(b).. (,, ),.(c).. ( ) ( )E C 1 C 2 +E k +1 k C 1 2 P+E k 1 (2.56) k +3 k +C 1 C 2 4 P+C1 k 3 ( 2.2.3) 1 24

1 (E) (k ±1 ) 2 (C 1 ) (k ±3 ) s =[],e=[e],c 1 =[C 1 ],c 2 =[C 2 ],p=[p] V =ṗ = k 2 c 1 + k 4 c 2 = f(s) 2 c 1 = k +1 se k 1 c 1 k 2 c 1 k +3 sc 1 + k 3 c 2 + k 4 c 2 (2.57) c 2 = k +3 sc 1 k 3 c 2 k 4 c 2 (2.58) e 0 e + c 1 + c 2 = e 0 (2.59) C 1,C 2 c 1 = 0, c 2 =0 c 1 = c 2 = K 2 e 0 s K 1 K 2 + K 2 s + s 2 (2.60) e 0 s 2 K 1 K 2 + K 2 s + s 2 (2.61) K 1 k 1 + k 2 k +1 K 2 k 3 + k 4 k +3 V = dp dt = k 2c 1 + k 4 c 2 (2.62) = (k 2K 2 + k 4 s)e 0 s K 1 K 2 + K 2 s + s 2 (2.63) E C 1 k +1 =2k +3 2k + C 1 1 C 2 2 25

2k 1 = k 3 2k 2k 2 = k 4 K 1 = k + k 2 2k + 1 2 K K 2 = 2k +2k 2 k + 2K K K +K 2 K + (2.63) V = 2V maxs s + K m 2 - ( 2-9) (2.2.5) C 1 ( E), C 2 ( E) 2.8 K 1 K 2 E E E 2.8: (2.2.5) K 1, K 2 E,E (2.63) 2.2.6 (Hill equation) k +1 0( ), k +3 ( ) K 1, K 2 0 K 1 K 2 = const K 2 m 26

(2.63) K 2 0 V = k 4se 0 s K 1 K 2 + s 2 = V maxs 2 K 2 m + s 2 = V max(s/k m ) 2 1+(s/K m ) 2 (2.64) V max k 4 e 0 ( 2-10) 3 1 n (n )K 1 K n 2 K 1 K n = const K n 0, K 1 V = V maxs n K n m + s n = V max(s/k m ) n 1+(s/K m ) n (2.65) (Hill equation) K n m = K 1 K 2 K n K 2 K n 1 n i=1 K i ( 2-11) (Hill ) n 27

(2.54) V = V max 1+(i/K i ) n (s/k s ) m 1+(s/K s ) m (2.66) n m 15 ( 2-12) K 1 K 2 E EI IEI K 3 K 4 K 5 AE K 6 AEI AIEI K 7 2.9: E I A 2.9 E I A AE AEI (2.65) n = 2, m =1 ( 2-14) 15 n m Hill n m 28

[1],,,,,, 2007 [2],, 8,, 1996 [3] J. Keener and J. neyd, Mathematical Physiology, pringer, 1991 [4],,, 1997. [5] A. Bruce et al.,,, Essential 2,, 2006. [6] C. P. Fall, E.. Marland, J. M. Wagner, J.J. Tyson, Computational Cell Biology, pringer, 2000. [7] J. D. Murray, Mathematical Biology I, 3rd Ed., pringer, 2001 [8],,, 2008. [9],,,, 1980 [10],, GC 33,, 2004 [11],,, 2015 [12],, 1988 [13] A. Goldbeter, G. Dupont, and M.J.Berridge (1990) Mimimal model for signal-induced Ca 2+ Oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl. Acad. ci. UA, 87, 1461-1465. [14] N. MacDonald (1989), Biological delay systems: linear stability theory, Cambridge University Press. [15] L. Edelsterin-Keshet, Mathematical Models in Biology, IAM, 1988 96

[16] G. D. Vries, T. Hillen, M. Lewis, J. Muller, B. chonfish, A Course in Mathematical Biology, IAM, 2006 [17] D. Kaplan and L. Glass, Understanding Nonlinear Dynamics, pringer, 1995 [18] A. L. Hodgkin and A. F. Huxley (1952) Quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500-544. 97