pptx

Similar documents
pptx

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

untitled

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

Supersymmetry after Higgs discovery

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

スーパーカミオカンデにおける 高エネルギーニュートリノ研究


TeV b,c,τ KEK/ ) ICEPP


Kaluza-Klein(KK) SO(11) KK 1 2 1

Gauge Mediation at Early Stage LHC

main.dvi

Muon g-2 vs LHC (and ILC) in Supersymmetric Models

LHC-ATLAS Hà WWà lνlν A A A A A A

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

J-PARC October 14-15, 2005 KEK

JPS_draft.pptx

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

余剰次元のモデルとLHC

,,..,. 1

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

Hasegawa_JPS_v6

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

nakajima_

nenmatsu5c19_web.key

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. T

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

超対称模型におけるレプトンフレーバーの破れ

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

素粒子物理学2 素粒子物理学序論B 2010年度講義第11回

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

Slide 1

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

粒子と反粒子


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

tnbp59-21_Web:P2/ky132379509610002944

抄録/抄録1    (1)V

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

スライド タイトルなし

日本内科学会雑誌第98巻第4号

Microsoft PowerPoint - okamura.ppt[読み取り専用]

日本内科学会雑誌第97巻第7号

TOP URL 1

I II III IV V

PowerPoint プレゼンテーション

パーキンソン病治療ガイドライン2002

研修コーナー

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Electron Ion Collider と ILC-N 宮地義之 山形大学

T2K 実験 南野彰宏 ( 京都大学 ) 他 T2Kコラボレーション平成 25 年度宇宙線研究所共同利用成果発表会 2013 年 12 月 20 日 1

TOP URL 1

LLG-R8.Nisus.pdf


( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

1

Untitled

Mott散乱によるParity対称性の破れを検証


本文/目次(裏白)

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

Part () () Γ Part ,

km_atami09.ppt


Gmech08.dvi

arxiv: v1(astro-ph.co)

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

TOP URL 1

輻射シーソー模型での ヒッグスインフレーションとその ILC での検証 松井俊憲 ( 富山大学 ) 共同研究者 : 兼村晋哉 鍋島偉宏 S.Kanemura, T.Matsui, T.Nabeshima, Phys. Le9. B 723, 126(2013) 2013 年 7 月 20 日 ILC

目次 T2K 実験 ニュートリノ振動解析 外挿 ( 前置検出器 後置検出器 ) の 手法 Toy MCによるデモンストレーション まとめ 2

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Microsoft Word - 11問題表紙(選択).docx

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

1 2 2 (Dielecrics) Maxwell ( ) D H

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

中央大学セミナー.ppt

SUSY DWs

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

PowerPoint プレゼンテーション

高校生の就職への数学II


Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

総研大恒星進化概要.dvi

25 3 4

Einstein ( ) YITP

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

I

Transcription:

Based on J. Hisano, T. Kuwahara, N. Nagata, Phys. Lett. B723 (2013) 324, J. Hisano, D. Kobayashi, T. Kuwahara, N. Nagata, JHEP 1307 (2013) 038, N. Nagata, S. Shirai, JHEP 1403 (2014) 049.

1. Introduc+on 2. High- scale Supersymmetry 3. SUSY GUT in high- scale SUSY 4. Proton Decay in high- scale SUSY 5. Conclusions and discussion

1. Introduc,on

Ø Ø Ø

60 N. Sakai (1981) S. Dimopoulos and H. Georgi (1981) 50 40 α -1 30 U(1) SU(2) 20 10 SU(3) 0 2 4 6 8 10 12 14 16 18 Log 10 (Q/GeV) S. P. Mar+n, arxiv: 9709356

SUSY SM TeV EW

SUSY SM [GeV] m 1/2 700 600 MSUGRA/CMSSM: tanβ = 10, A = 0, µ>0 0 ATLAS -1 L dt = 4.7 fb, Combined s=7 TeV SUSY Observed limit (±1 σ ) theory Expected limit (±1 σ exp ) TeV τ 500 LSP 400 ~ q (1000) ~ q (1400) q ~ (1800) -1 PLB 710 (2012) 67-85, 1.04 fb LEP Chargino ~ No EWSB g (1200) ~ g (1000) EW 300 200 ~ q (600) ~ g (600) ~ g (800) 500 1000 1500 2000 2500 3000 3500 4000 m 0 [GeV]

SUSY SM Events / 2 GeV 3000 2500 2000 1500 TeV 1000 EW g 3500 ATLAS 500 200-1 s=7 TeV, Ldt=4.8fb -1 s=8 TeV, Ldt=5.9fb (a) Data Sig+Bkg Fit (m =126.5 GeV) H Bkg (4th order polynomial) τ 500 LSP 400 H 300 200 ~ g (600) [GeV] m 1/2 700 600 MSUGRA/CMSSM: tanβ = 10, A = 0, µ>0 0 ~ q (600) ~ q (1000) ~ q (1400) q ~ (1800) ATLAS -1 L dt = 4.7 fb, Combined s=7 TeV SUSY Observed limit (±1 σ ) theory Expected limit (±1 σ exp ) -1 PLB 710 (2012) 67-85, 1.04 fb LEP Chargino ~ No EWSB g (1200) ~ g (1000) ~ g (800) 500 1000 1500 2000 2500 3000 3500 4000 m 0 [GeV]

SUSY SM Events / 2 GeV 3000 2500 2000 1500 TeV 1000 EW g 3500 ATLAS 500 200-1 s=7 TeV, Ldt=4.8fb -1 s=8 TeV, Ldt=5.9fb (a) Data Sig+Bkg Fit (m =126.5 GeV) H Bkg (4th order polynomial) τ 500 LSP 400 H 300 200 ~ g (600) [GeV] m 1/2 700 600 MSUGRA/CMSSM: tanβ = 10, A = 0, µ>0 0 ~ q (600) ~ q (1000) ~ q (1400) q ~ (1800) ATLAS -1 L dt = 4.7 fb, Combined s=7 TeV SUSY Observed limit (±1 σ ) theory Expected limit (±1 σ exp ) -1 PLB 710 (2012) 67-85, 1.04 fb LEP Chargino ~ No EWSB g (1200) ~ g (1000) ~ g (800) 500 1000 1500 2000 2500 3000 3500 4000 m 0 [GeV]

Ø ( stop ) Ø ( CP ) Ø Ø w/ ( )

N. Sakai, T. Yanagida (1982) S. Weinberg (1982) H. Murayama and A. Pierce (2002) Super- Kamiokande

2. High- scale Supersymmetry

(M Pl : the reduced Planck scale)

Scalar Par cles Gravi no Higgsinos Gauginos ( ) Gluino Bino Wino

質量スペクトル Scalar Par!cles Gravi!no Higgsinos MS = 10(2-4) TeV Gauginos (ループ因子の分軽くなる) ヒッグス質量を説明 mh>127gev Gluino tanb 10 Bino 135GeV Wino 130GeV tanβは小さい 125GeV 120GeV mh<115.5gev 1 10 102 MSUSY êtev 103 104 M. Ibe, S. Matsumoto, T. Yanagida (2012)

Scalar Par cles Gravi no Higgsinos M S = 10 (2-4) TeV Gauginos ( ) Gluino Bino Wino O(1) TeV pure gravity media.on, M. Ibe, T. Moroi, T. T. Yanagida (2007) simply unnatural supersymmetry, N. Arkani- Hamed, et.al. (2012) spread supersymmetry, L. J. Hall and Y. Nomura (2012) mini- split, A. Arvanitaki, et.al. (2012)

3. SUSY GUT in high- scale SUSY

S. Dimopoulos and H. Georgi (1981) N. Sakai (1981) (M HC : )

SU(5) SU(3) C SU(2) L U(1) Y

J. Hisano, H. Murayama, T. Yanagida (1992).

(1- loop in DR scheme)

Ø Ø Ø Ø

M Hc 10 18 10 17 10 16 10 15 M 3 /M 2 = 3 M 3 /M 2 = 9 M 3 /M 2 = 30 10 2 10 3 μ H = M S M 2 = 3TeV tanβ = 3 M S (TeV) J. Hisano, T. Kuwahara, N. Nagata, Phys. Leb. B723 (2013) 324.

μ H = M S M S = 10 3 TeV tanβ = 3 M GUT M 2 = 300GeV 10 16 M 2 = 3TeV 10 1 M 3 (TeV) M GUT J. Hisano, T. Kuwahara, N. Nagata, Phys. Leb. B723 (2013) 324.

50 U(1) 28 High- scale SUSY α 1 40 30 20 10 SU(2) SU(3) 10 6 10 8 10 10 10 12 10 14 10 16 Scale (GeV) α 1 Zoom 27 26 25 10 16 Scale (GeV) Low- scale SUSY

4. Proton decay in high- scale SUSY

2 6 + 2 9 9 2 = 6 + 4 + 2 CKM

Q i Q k U i U k H C H C H C H C LLLL Q i L l E j D l RRRR LLLL RRRR

LLLL RRRR

At SUSY scale g, W, B, H u,d

Minimal Flavor Viola+on q L q L ll ( q L ) q L (l L ) d R (s R ) t R τ R u R W H u Hd q L (a) LLLL l L (q L ) s L (d L ) (b) RRRR (ν τ ) L T. Goto and T. Nihei (1999) V. Lucas and S. Raby (1997) μ H >> M 2

2 J. Raaf, NNN 2013 Super- Kamiokande amiokande ure water m.w.e.) in Kamioka ch Inner PMTs Outer D) PMTs 00% 1996年開始 22500 ton の水を用いたチェレンコフ検出器 Atmospheric%ν% ~1% GeV% cos c = 1/n TeV% チェレンコフ光から電子とミューオンを区別できる

Hyper- Kamiokande Lifetime limit 90 CL (years) 10 36 Hyper-Kamiokande 10 35 Super-Kamiokande 10 34 10 33 2010 2015 2020 2025 Year 2030 2035 2040

p K+ν + + in Water!K Cherenkov + in Water Chere!K in inwater Water!K Cherenkov Cherenkov 1, 2013,# /.#0.-# J. Raaf, NNN 2013 November 11, 2013 23 J. Raaf, NNN 2013 *#+(,# *#+(,# -.//.#0.-# -.//.#0.-# $%&# *#+(,# Improvements in Improvements in -.//.#0.-# $%&#$%&# p νk+ p νk+ $'()# 64 % $'()#$'()# $%&# 21 % $'()# momentum reconstruction Better momentum reconstruction gging efficiency!"#$ %&'($)*+,-./,0$!"&$$!"1$ %2,3$,4,)5-*26)70$!"8$ + 4はチェレンコフ光を出す敷居を超えないので "10.-#.23## #4 5# 5#γ-tagging efficiency!"#$ %&'($)*+,-./,0$!"&$$!"1$ %2,3$,4,)5-*26)70$!"8$ K & es atmospheric ν BG "10.-#.23## #!?<5##>#!"#$!@<"##># %&'($)*+,-./,0$!"&$$!"1$ %2,3$,4,)5-*26)70$!"8$!;<=##>#!;<@##># 4#5# #! "10.-#.23##!"#$ %&'($)*+,-./,0$!"&$$ 6789(28:!;<=##># ν BG!?<5##>#!;<@##>#!@<"##># 33 止まっているK中間子を探すことになる Reduces atmospheric decay-electron tagging # # > 5.9 "10 years 5<G# (90% 55#&0:F 5<?# 5<*# 5<G#!;<=##># 5<G#!?<5##># 6789(28:!;<@##># CL)!@<"##># # #!!;<=##># 5<G#!?<5##># A.8&-'BC23#'.0( #DE!55#&0:F 5<?# 5<*# 6789(28:!; 33 ncy B Better decay-electron tagging + # > 5.9 "10 years A.8&-'BC23#'.0(#DE!55#&0:F p!" K 5<?# 5<*# 5<G# 5<G# (289()#.23#%.8&-'BC23#'.0()#.J('#.2.K:)9)#9/L'BM(/(20# SK-I+II+III+IV Preliminary # A.8&-'BC23#'.0( #DE!55#&0:F 5<?# 5<*#,III ~80% cf. SK-IV ~96% H(I#(789(289()#.23#%.8&-'BC23#'.0()#.J('#.2.K:)9)#9/L'BM(/(20# 酸素原子核中の陽子が崩壊したことによる 励起 efficiency '(K9/92.':#Q5!?R#HB#8.2393.0()S#Q*5#&0B2#:'#DNO#!4Q4?4GFR# B p!" K + H(I#(789(289()#.23#%.8&-'BC23#'.0()#.J('#.2.K:)9)#9/L'BM(/(20# NCL('1O#P'(K9/92.':#Q5!?R#HB#8.2393.0()S#Q*5#&0B2#:'#DNO#!4Q4?4GFR# SK-I+II+III+ 0 ed particle ID and new π された窒素原子が出すガンマ線でタグ SK-I,II,III ~80% cf. SK-IV ~96% H(I#(789(289()#.23#%.8&-'BC23#'.0()#.J('#.2.K:)9)#9/ NCL('1O#P'(K9/92.':#Q5!?R#HB#8.2393.0()S#Q*5#&0B2#:'#DNO#!4Q4?4GFR# struction algorithm NCL('1O#P'(K9/92.':#Q5!?R#HB#8.2393.0()S#Q*5#&0B2#:'#DN 0 d π+π0 Refined particle ID and new π!"# SK-I SK-IIalgorithmSK-III reconstruction (20% coverage) SK-IV (new electronics)!"#!"#

lifetime (years) 10 36 10 35 10 34 10 33 M S = μ M 2 = 3 TeV M 16 = 1.0 10 GeV tanβ = 3 tanβ = 5 Hc tanβ = 10 tanβ = 30 tanβ = 50 10 2 10 3 10 4 10 5 M S (TeV) J. Hisano, D. Kobayashi, T. Kuwahara, N. Nagata (2013).

30»m B é» =»m W é» = 3 TeV,»m g é» = 10 TeV neutron Kaon EDM mixing 10 mæ3e tanb tanb 3 1 30 10 mæe conv. mæeg electron EDM charm mixing mæe conv. electron EDM neutron EDM Kaon mixing M h = 125.5±1 GeV 3 1 mæeg mæ3e charm mixing M h = 125.5±1 GeV 10 10 2 10 3 10 4 10 5 m q é = m l é =»m» HTeVL W. Altmannshofer, R. Harnik, J. Zupan, JHEP 1311 (2013) 202.

30»m B é» =»m W é» = 3 TeV,»m g é» = 10 TeV neutron Kaon EDM mixing 10 mæ3e tanb tanb 3 1 30 10 mæe conv. mæeg electron EDM charm mixing mæe conv. electron EDM neutron EDM Kaon mixing q i q j g q I M h = 125.5±1 GeV q J g q j q i 3 1 mæeg mæ3e charm mixing M h = 125.5±1 GeV 10 10 2 10 3 10 4 10 5 m q é = m l é =»m» HTeVL W. Altmannshofer, R. Harnik, J. Zupan, JHEP 1311 (2013) 202.

30»m B é» =»m W é» = 3 TeV,»m g é» = 10 TeV neutron Kaon EDM mixing 10 mæ3e tanb tanb 3 1 30 10 mæe conv. mæeg electron EDM charm mixing mæe conv. electron EDM neutron EDM Kaon mixing M h = 125.5±1 GeV g γ (g) 3 1 mæeg mæ3e u L charm mixing M h = 125.5±1 GeV 10 10 2 10 3 10 4 10 5 m q é = m l é =»m» HTeVL ũ L t L t R ũ R u R W. Altmannshofer, R. Harnik, J. Zupan, JHEP 1311 (2013) 202.

30»m B é» =»m W é» = 3 TeV,»m g é» = 10 TeV neutron Kaon EDM mixing 10 mæ3e tanb 3 1 30 10 mæe conv. tanb mæeg electron EDM charm mixing mæe conv. electron EDM neutron EDM Kaon mixing M h = 125.5±1 GeV 3 O(10 2 )TeV mæeg charm mixing 1 mæ3e M S M h = 125.5±1 GeV 10 10 2 10 3 10 4 10 5 m é q = m é T. Moroi and M. Nagai l =»m» (2013), HTeVL D. McKeen, M. Pospelov, A. Ritz (2013) W. Altmannshofer, R. Harnik, J. Zupan (2013), K. Fuyuto, J. Hisano, N. Nagata, K. Tsumura (2013) W. Altmannshofer, R. Harnik, J. Zupan, JHEP 1311 (2013) 202.

Ø Ø

Sfermion Flavor Viola+on ν µ,ν τ s t b u ũ δ Q L 13 g δ Q L 13 d d

10 37 10 36 10 35 1/Γ(p K + ν) [year] 10 34 10 33 10 32 10 31 10 30 δ Q L 13 δ Q L 12 M S = 100 TeV, M 1 = 600 GeV," M 2 = 300 GeV, M 3 = -2 TeV," μ = M S, M Hc = 10 16 GeV," tanβ = 5" 10 29 10 28 10 27 δũr 13 δ Q L 23 SK Limit 0.01 0.1 δ N. Nagata, S. Shirai (2013).

Minimal Flavor Violation 10 31 10 32 10 33 10 34 10 35 10 36 10 37 lifetime (years) 10 31 10 32 10 33 10 34 10 35 10 36 10 37 lifetime (years)

Soudan Frejus Kamiokande IMB Super-K p e + 0 n e + n + - p + 0 n + p + n 0 p e + p + n p e + 0 n e + n 0 p + 0 p + p e + p + n p e + K 0 n e + K - n e - K + p + K 0 n + K - p K + n K 0 p e + K*(892) 0 p K*(892) + n K*(892) 0 10 32 10 33 10 34 /B (years) 10 35 Super- Kamiokande

U i D j U k E l X X Q k L l Q i Q j

Soudan Frejus Kamiokande IMB Super-K p e + 0 n e + n + - p + 0 n + p + n 0 p e + p + n p e + 0 n e + n 0 p + 0 p + p e + p + n p e + K 0 n e + K - n e - K + p + K 0 n + K - p K + n K 0 p e + K*(892) 0 p K*(892) + n K*(892) 0 10 32 10 33 10 34 /B (years) 10 35 Super- Kamiokande

U i D j U k E l X X Q k L l Q i Q j

10 38 1/Γ(p π 0 µ + ) [year] 10 36 10 34 10 32 10 30 δ Q L 13 δ Q L 12 δũr 13 SK Limit M S = 100 TeV, M 1 = 600 GeV," M 2 = 300 GeV, M 3 = -2 TeV," μ = M S, M Hc = 10 16 GeV," tanβ = 5" 0.01 0.1 δ N. Nagata, S. Shirai (2013).

1 0.1 Uppuer bound 0.01 δ Q L 13 δ Q L 12 δ Q L 23 M S = 100 TeV, M 1 = 600 GeV," M 2 = 300 GeV, M 3 = -2 TeV," μ = M S, M Hc = 10 16 GeV," tanβ = 5" 0.001 10 1 10 2 10 3 10 4 m 0 [TeV] δũr 13 N. Nagata, S. Shirai (2013).

5. Conclusions and discussion

Discussion Ø Ø Ø Ø Ø

Summary

Backup

Minimal Flavor Viola+on

Sfermion Flavor Viola+on

-< 0 (ud) R u L p> < 0 (ud) L u L p> <K 0 (us) R u L p> <K 0 (us) L u L p> -<K + (us) R d L p> <K + (us) L d L p> -<K + (ud) R s L p> <K + (ud) L s L p> -<K + (ds) R u L p> -<K + (ds) L u L p> < (ud) R u L p> < (ud) L u L p> N f =2+1 "direct" N f =2+1 "indirect" 0 0.05 0.1 0.15 0.2 W 0 (µ=2gev) [GeV 2 ] Y. Aoki, E. Shintani, and A. Soni, arxiv:1304.7424

lifetime (years) 10 36 10 35 10 34 10 33 10 32 Super-Kamiokande Yukawa coupling Matrix element tan 10 M S = 100 TeV, M 1 = 600 GeV," M 2 = 300 GeV, M 3 = -2 TeV," μ = M S, M Hc = 10 16 GeV "

10 35 Γ 1 (p K + ν)[year] 10 34 10 33 10 32 Long-Distance Theory Short-Distance 0.01 0.1 δ Q L 13 N. Nagata, S. Shirai (2013).

s ν τ B s δ Q L 23 b ν τ t b δ Q L 13 δ Q L 13 ũ d g u d

ηµ + ηe + K + ν K 0 µ + K 0 e + π + ν M S = 100 TeV, M 1 = 600 GeV," M 2 = 300 GeV, M 3 = -2 TeV," μ = M S, M X = 10 16 GeV," tanβ = 5" π 0 µ + π 0 e + 10 30 10 32 10 34 10 36 10 38 10 40 Γ 1 [year]

10 37 M = 3 TeV 2 3 M S = 10 TeV lifetime (years) 10 36 10 35 10 34 10 33 10 1 M 3 (TeV)

10 9 8 7 Theory Experiment δ Q L 23 = δũr 23 =0.9 Q L 3 =4 tan β 6 5 4 3 2 1 10 1 10 2 10 3 10 4 10 5 m 0 [TeV] N. Nagata, S. Shirai (2013).

Dim- 5 proton decay via Planck suppressed operators 12 M scalar, no f mixing 11 m h excl tan 1 Log 10 MScalar GeV 10 9 8 m h excl tan 2 Hyper K p K excl Hyper K 7 p e excl 6 4 2 0 2 4 Log 10 M ino M Scalar M. Dine, P. Draper, W. Shepherd, arxiv: 1308.0274.

1 0.1 Uppuer bound 0.01 δ Q L 13 δ Q L 12 δ Q L 23 M S = 100 TeV, M 1 = 600 GeV," M 2 = 300 GeV, M 3 = -2 TeV," μ = M S, M Hc = 10 16 GeV," tanβ = 5" 0.001 10 1 10 2 10 3 10 4 m 0 [TeV] δũr 13 N. Nagata, S. Shirai (2013).

1 Uppuer bound 0.1 m 0 [TeV] d R 12 = QL 12 ũr 12 = Q L 12 d R 13 = QL 13 Q L 13 ũr 13 = 0.01 10 1 10 2 10 3 10 4 g γ (g) u L ũ L t L t R ũ R u R N. Nagata, S. Shirai (2013).

q i q I q j g g q j q J q i 1 1 0.1 Uppuer bound 0.1 δũr 13 = δũr 23 (D0 ) δ d R 13 (Bd 0) δ d R 23 (Bs) 0 0.01 10 1 10 2 10 3 10 4 m 0 [TeV] δ d R 12 (K 0 ) δũr 12 (D0 ) δ d R 13 = δ d R 23 (K 0 ) Uppuer bound 0.01 δũr 13 = δũr 23 = δ Q L 13 = δ Q L 23 (D0 ) δ d R 13 = δ Q L 13 (B0 d ) δ d R 23 = δ Q L 23 (B0 s) 0.001 10 1 10 2 10 3 10 4 m 0 [TeV] δ d R 12 = δ Q L 12 (K0 ) δũr 12 = δ Q L 12 (D0 ) δ d R 13 = δ d R 23 = δ Q L 13 = δ Q L 23 (K0 ) N. Nagata, S. Shirai (2013).