PowerPoint Presentation

Similar documents
global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

Mott散乱によるParity対称性の破れを検証

( ) ,

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

スライド 1

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li


総研大恒星進化概要.dvi

EOS and Collision Dynamics Energy of nuclear matter E(ρ, δ)/a = E(ρ, )/A + E sym (ρ)δ 2 δ = (ρ n ρ p )/ρ 1 6 E(ρ, ) (Symmetric matter ρ n = ρ p ) E sy

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

1401_HPCI-lecture4.SNEOS.pptx

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

untitled

PDF

A 99% MS-Free Presentation

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

QMI_10.dvi


1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

4/15 No.

Canvas-tr01(title).cv3

main.dvi

36 th IChO : - 3 ( ) , G O O D L U C K final 1

Gmech08.dvi

QMII_10.dvi

rcnp01may-2

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

untitled

0406_total.pdf

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

IA

Microsoft Word - 章末問題

³ÎΨÏÀ

1401_HPCI-lecture3.EOS.pptx

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

untitled

EOS EOS

i

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)

QMI_09.dvi

QMI_10.dvi

TOP URL 1


chap03.dvi

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

LLG-R8.Nisus.pdf

Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

TOP URL 1

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

02-量子力学の復習

BH BH BH BH Typeset by FoilTEX 2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

all.dvi

Note.tex 2008/09/19( )

untitled

meiji_resume_1.PDF

Part () () Γ Part ,

COE

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

MOSFET HiSIM HiSIM2 1

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

日立金属技報 Vol.34

4‐E ) キュリー温度を利用した消磁:熱消磁

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

The Physics of Atmospheres CAPTER :

2012専門分科会_new_4.pptx

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

1 2 2 (Dielecrics) Maxwell ( ) D H

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

重力方向に基づくコントローラの向き決定方法

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

@ τ weak 1 σ weak n target v relative sec ( T 10MeV ) 2 ( σ weak 4G2 F h2 c 2 π T 2, n target ρ m u, v relative c ( τ dyn 1 0.4msec

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

FPWS2018講義千代

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

Electron Ion Collider と ILC-N 宮地義之 山形大学

Transcription:

2010 KEK (Japan) (Japan) (Japan) Cheoun, Myun -ki Soongsil (Korea) Ryu,, Chung-Yoe Soongsil (Korea)

1. S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998) Magnetar : ~ 10 15 G ~ 10 17 19 G (?) P. Arras and D. Lai, P.R.D60, #043001 (1999) S. Ando, P.R.D68 #063002 (2003) 2

CasA 10 53 erg http://chandra.harvard.edu/photo/ 2004/casa/casa_xray.jpg ~ 10 15 G ~ 10 17 19 G (?) T = 20 40 MeV T.M., et al, arxiv:nucl-th/1009.0976 3

4 Birth of Proto-neutron Star core collapse trapping core bounce H He C+O Si Fe SN explosion shock in envelope shock propagation in core NS 4

2. Formulation 5 Magnetic Field : Baryon Lepton B & L Mag. Weak Interaction e + B e + B : scattering e + B e - + B : absorption

2-1 1 Neutron-Star Matter in RMF Approach + p-n Symmetry Force

EOS of PM1-1 BE = ρ * 16 MeV, M N / M N = 0.7, K = 200 MeV at 0 = 0.17 fm -3 g σ g Λ σ = g ω g Λ ω = 2 / 3 T.M, H. Shin, H. Fujii, & T. Tatsumi, PTP. 102, P809

EOS of Proto Neutron-Star Star-Matter at Finite Temperature 8 Charge Neutral ρ p = ρ e & Lepton Fraction : Y L = 0.4 2 g = g 3 Λ σ, ω σ, ω

2-2 2 Dirac Equation under Magnetic Fields µ N B << F (Chem. Pot) B ~ 10 17 G Perturbative calculation, Ignoring Landau Level Magnetic Part of Lagrangian Dirac Eq.

Fermi Distribution Spin Vector Dirac Spinor

The Cross-Section of Lepton-Baryon Scattering with σ = σ 0 + σ σ B

Spin-indep. part Spin-dep. Part

3 Results k i = (neutrino chem.pot.), B = 2 10 G and θ = ε 0 17 o i 3% difference

Magnetic Parts of Scattering Cross-Sections σ Sc = dω i dσ ( ) e dω f e 14 Neutrinos are more Scatterd in Arctic Area

Magnetic Parts of Absorption Cross-Sections σ Ab = dω f dσ ( e) e dω f 15 Neutrinos are less Absorbed in Arctic Area

Elements of 16 Scattering Cross-Sections at T = 20 MeV

Elements of Absorption Cross-Sections 17 Contribution from is small

4 Neutrino Absorption in Proto Neutron Star Neutrino Phase Space Distribution Function { 1+ exp [( p ε ) / ]} f ( p, r) f0( p, r) + f ( p, r), f0( p, r) = 1 T Equib. Part Non-Equib. Part Neutrino Propagation Boltzmann Eq. c d dx d f0( p, r) + c f ( p, r) = Icoll cb f ( p, r), b = dx σ V ab Solution f z 1 z ( p, rt, z) = dx f (p,rt,x) d yb y 0 0 exp x ( ) c x dε z = r pˆ, f0(p,rt,z) = f0(p,rt,z) z dz ε,

Baryon density in Proto-Neutron Star M = 1.68M solar T = 30 MeV Y L = 0.4 Calculating Neutrino Propagation above ρ B = ρ 0

Mean-Free Path when B =0 λ = ab 0 1 ab σ / V o σ = σ ab ab o ~ ( + σ cosθ ) 1 ab

Angular Dependence of Emitted Neutrino < p >= drdp ( p uˆ ) f ( p, r) Direction of Emitted Neutrino

< p θ Kick Velocity 2 4π 2 E T >= = 4πR P P 0 0 + P cosθ, 1 p z = 3 P 1 p E T z = P1 3P 0 = = 6. 0 10 2. 6 10-3 -3 p, n p, n, Λ Assuming Nuetrino Energy ~ 3 10 53 erg D.Lai & Y.Z.Qian, Astrophys.J. 495 (1998) L103 M v NS kick = 1.68M = p z M solar [g], E = 180[km/s] = 77 [km/s] T = 3 10 53 p, n p, n, Λ 22

4 Summary EOS RMF p,, n B 10 17 G 1.7 % 2.2 % at B = 3 and 0 T = 20 MeV B = 2 10 17 G B = 2 10 18 G 10% 1%, 23

EOS RMF p,, n, B = 2 2 10 17 G V kick = 180 km/s ( p,n ), 77 km/s (p,n(,n, 400 km/s ( (,, 280km/s (Lai & Qian) 1.7 % at ρ B = 3ρ 0, T = 20 MeV) T = 30 MeV 24