Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution

Similar documents
untitled


A Graduation Thesis of College of Engineering, Chubu University Pose Estimation by Regression Analysis with Depth Information Yoshiki Agata

IPSJ SIG Technical Report Vol.2013-CVIM-187 No /5/30 1,a) 1,b), 1,,,,,,, (DNN),,,, 2 (CNN),, 1.,,,,,,,,,,,,,,,,,, [1], [6], [7], [12], [13]., [

IS1-09 第 回画像センシングシンポジウム, 横浜,14 年 6 月 2 Hough Forest Hough Forest[6] Random Forest( [5]) Random Forest Hough Forest Hough Forest 2.1 Hough Forest 1 2.2

IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing


untitled

i

2

[1] SBS [2] SBS Random Forests[3] Random Forests ii

yoo_graduation_thesis.dvi

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

fiš„v2.dvi

% 2 3 [1] Semantic Texton Forests STFs [1] ( ) STFs STFs ColorSelf-Simlarity CSS [2] ii

<4D F736F F F696E74202D C835B B E B8CDD8AB B83685D>

SC-85X2取説




SICE東北支部研究集会資料(2017年)

2017 (413812)

Deep Learning Deep Learning GPU GPU FPGA %

II

これわかWord2010_第1部_ indd

パワポカバー入稿用.indd

これでわかるAccess2010

35_3_9.dvi

,,.,.,,.,.,.,.,,.,..,,,, i


平成18年版 男女共同参画白書

III


4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

ii



知的学習認識システム特論9.key

本文6(599) (Page 601)

エクセルカバー入稿用.indd

i


Wide Scanner TWAIN Source ユーザーズガイド

01_.g.r..

untitled


14 2 5


色の類似性に基づいた形状特徴量CS-HOGの提案

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa



IPSJ SIG Technical Report Vol.2015-MPS-103 No.29 Vol.2015-BIO-42 No /6/24 Deep Convolutional Neural Network 1,a) 1,b),c) X CT (Computer Aided D


Deep Learningとは

活用ガイド (ソフトウェア編)

困ったときのQ&A

2.2 6).,.,.,. Yang, 7).,,.,,. 2.3 SIFT SIFT (Scale-Invariant Feature Transform) 8).,. SIFT,,. SIFT, Mean-Shift 9)., SIFT,., SIFT,. 3.,.,,,,,.,,,., 1,

Haiku Generation Based on Motif Images Using Deep Learning Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura Scho

入門ガイド

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

03_特集2_3校_0929.indd

Computer Security Symposium October ,a) 1,b) Microsoft Kinect Kinect, Takafumi Mori 1,a) Hiroaki Kikuchi 1,b) [1] 1 Meiji U

ii

IPSJ SIG Technical Report Vol.2017-CVIM-207 No /5/10 GAN 1,a) 2,b) Generative Adversarial Networks GAN GAN CIFAR-10 10% GAN GAN Stacked GAN Sta

IPSJ SIG Technical Report Vol.2017-MUS-116 No /8/24 MachineDancing: 1,a) 1,b) 3 MachineDancing MachineDancing MachineDancing 1 MachineDan

HOG HOG LBP LBP 4) LBP LBP Wang LBP HOG LBP 5) LBP LBP 1 r n 1 n, 1

Computational Semantics 1 category specificity Warrington (1975); Warrington & Shallice (1979, 1984) 2 basic level superiority 3 super-ordinate catego

活用ガイド (ソフトウェア編)

IPSJ SIG Technical Report Vol.2016-GI-35 No /3/9 StarCraft AI Deep Q-Network StarCraft: BroodWar Blizzard Entertainment AI Competition AI Convo

i

paper.dvi

橡6.プログラム.doc

活用ガイド (ソフトウェア編)

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

パソコン機能ガイド

パソコン機能ガイド

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

はしがき・目次・事例目次・凡例.indd

Javaと.NET

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o


2004年度日本経団連規制改革要望

「産業上利用することができる発明」の審査の運用指針(案)

28 Horizontal angle correction using straight line detection in an equirectangular image


& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

長崎県地域防災計画

3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root

ONLINE_MANUAL

ONLINE_MANUAL

[1] [2] [3] [11], [12] [4], [5] [6] [9] [10] (1) W D C i N i i 0.62 [t/m 2 ] [1] W D = C i N i (1) i c 2016 Information Proce

letter by letter reading read R, E, A, D 1

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int



生活設計レジメ

Transcription:

Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi

1940 1980 [1] 90 3 1 3 ( ) 2 3 90 2012 Deep Learning Deep Learning [2] Drop out[3] Deep Learning Histgram of Oriented Gradients(HOG) [4] Scale Invariant Feature Transform(SIFT) [5] Deep Learning Convolutional Neural Network(CNN) [6] CNN 1989 ii

CNN 5 CNN Deep Learning CNN CNN CNN iii

1 1 1.1................................ 1 1.1.1............................... 2 1.2.............................. 4 1.3.............................. 5 1.3.1............................. 6 1.3.2.............................. 9 1.3.3........................... 12 2 Deep Learning 14 2.1 Convolutional Neural Network......................... 15 2.1.1............................... 16 2.1.2.................................. 18 2.1.3............................. 19 3 21 3.1.................................. 21 3.2................................. 23 3.3................................... 23 3.3.1................................. 23 3.4 CNN.................... 28 3.4.1................................. 28 3.4.2................................. 29 38 iv

40 41 v

1.1................................. 2 1.2.............................. 3 1.3............................ 4 1.4............. 6 1.5............................ 7 1.6............................ 9 2.1......................... 14 2.2 CNN [7][8]................. 15 2.3 CNN............................... 16 2.4............................ 18 2.5.............................. 19 2.6 CNN............................. 20 3.1 MNIST Dataset.............................. 22 3.2........................... 24 3.3............................ 25 3.4................................... 26 3.5................. 27 3.6.................... 28 3.7...................... 29 3.8....................... 31 3.9...................... 32 3.10................. 33 3.11.................. 34 vi

3.12 CNN.................... 36 3.13 epoch........................ 37 vii

3.1.................... 30 3.2.................... 35 viii

1 1 1.1 () 1.1 1 1.1 w 1

1.1. f 1.1: x i w i f y x w d w i y (1.1) ( d ) y = f w i x i i=1 (1.1) 1.1.1 y f x i w i X (1.2) X 2 (1.2) X 0 1 X 0-1 2

1.1. 1 (X > 0) f (X) = 1 (X 0) (1.2) 1.2 (1.3) 0 1 1.2: f (X) = 1 1 + exp ( gx) (1.3) (1.3) g g 1.2 1.2 3

1.2. 1.3.2 f(x) (1.4) f (X) = gf (X) (1 f (X)) (1.4) 1.2 1957 [9] 1.3 3 2 s 1 θ s 2 s 3 a 1 a 2 w j s i w ij a j s d a J S A O 1.3: d J 1 w ij w j -1 1 2 θ θ 4

1.3. A = [a 1, a 2,..., a j,..., a J ] T w = [w 1, w 2,..., w j ] O (1.5) J O = f w j1 a j θ (1.5) j=1 O T (1.6) (1.7) w t+1 = w t + η (T O) A (1.6) θ t+1 = θ t + η (T O) (1.7) (1.6) (1.7) t η η > 0 (1.6) (1.7) 0% 1.3 2 x 1 x 2 2 1.4(a) 2 x 1 x 2 1.4(b) 3 1.4 1.5 3 2 c d J 5

1.3. x 2 x 2 x 1 x 1 1.4: 1.3.1 1 (1.9) E N = 1 N c (T k O k ) 2 (1.8) 2 n=1 k=1 6

1.3. θ γ s 1 s 3 a 1 o 1 o 2 s i w ij a j w ij o k a J s d o c S A O 1.5: E N (1.9) E N η w t+1 = w t η E N w t (1.9) 1.3.2 7

1.3. 1 1 1 (1.10) E n = 1 c (T k O k ) 2 (1.10) 2 k=1 (1.10) E n E n η (1.11) w t+1 = w t η E n w t (1.11) 1.3.2 1 mini batch mini batch mini batch 1 mini batch M (1.12) E m (1.13) E M = 1 M c (T k O k ) 2 (1.12) 2 m=1 k=1 8

1.3. w t+1 = w t η E M w t (1.13) 1.3.2 1.6 1.6 θ γ i j k k d c c S A O T 1.6: d c S i A j O k T k f w ij w jk j (1.14) w ij S j θ j 9

1.3. d A j = f w ij S i + θ j (1.14) i= (1.10) (1.10) O k O k (1.15) T δ k E n O k = (O k T k ) = δ k (1.15) O k P k = j w jk A j + γ k O k (1.16) O k = f (P k ) (1.16) (1.16) k > 2 (1.17) (1.17) P k 1 P j O k = exp (P k) j exp (P j ) (1.17) E n E n E n (1.18) E n = E njk w jk (1.18) 10

1.3. E njk E njk (1.18), (1.19) E njk = E n w jk = E n O k O k w jk = E n O k O k P k P k w jk (1.19) (1.19) E njk (1.20) E njk = E n w jk = δ k O k (1 O k ) A j (1.20) E nij E nij (1.21) E nij = E n w ij = E n A j A j P j P j W ij = E n O k P k A j P j O k P k A j P j w ij ( = δ k O k (1 O k ) W jk ) A j (1 A j ) S i (1.21) k (1.20) (1.21) (1.20) (1.20) (1.11) (1.22) (1.23) w t+1 jk = w t jk η δ k O k (1 O k ) A j (1.22) γ t+1 j = γ t j η δ k O k (1 O k ) (1.23) 11

1.3. (1.24) (1.25) ( wij t+1 = wij t η δ k O k (1 O k ) W jk ) A j (1 A j ) S i (1.24) θ t+1 j = θ t j η k ( k δ k O k (1 O k ) W jk ) A j (1 A j ) (1.25) epoch 1epoch 1 1.3.3 0 1 0 1 2 2 1 t t = 1 C 1 t = 0 C 2 y (1.3) y(x, w) p(c 1 x) p(c 2 x) 1 y(x, w) (1.26) p (t x, w) = y (x, w) t {1 y (x, w)} 1 t (1.26) (1.26) (1.27) N E = {t n ln y n + (1 t n ) ln (1 y n )} (1.27) n=1 12

1.3. Simard [10] (1.28) N C E = t nc ln y c (1.28) n=1 c=1 13

2 Deep Learning Deep Learning 2.1 O T O k i j j j k k d c c S A O T 2.1: 2.1 14

2.1. Convolutional Neural Network Convolutional Neural Network(CNN) CNN CNN 2.1 Convolutional Neural Network CNN CNN Hubel Wisel [11] Hubel 2.2(a) Fukushima 2.2(b) Neocognitron [8] Neocognitron CNN Neocognitron 2.2: CNN [7][8] CNN CNN 15

2.1. Convolutional Neural Network 2.3 CNN 2.3: CNN 2.1.1 CNN 16

2.1. Convolutional Neural Network CNN Hubel n x n y n w n w n x, n y (2.1) n x = n x n w + 1 n y = n y n w + 1 (2.1) 2 2 2 Hubel CNN 2.4 P h i h (2.2) i P h = max i P h i (2.2) 2 2 (2.3) n x = n x /2 n y = n y /2 (2.3) 17

2.1. Convolutional Neural Network P P 1 P 2 P 3 P 4 2.4: 2.1.2 CNN 2.5 Full-Connect Full-Connect 18

2.1. Convolutional Neural Network 2.5: 2.1.3 CNN (2.1) (2.3) n w n w n w n w 2 2 1 Full-Connect 2.6 CNN 19

2.1. Convolutional Neural Network 2.6: CNN 20

3 CNN CNN CNN 2 2 MNIST Dataset CNN 3.1 MNIST Dataset 3.1 MNIST Dataset MNIST Dataset 0 9 50,000 10,000 10,000 28 28pixel 21

3.1. 3.1: MNIST Dataset 22

3.2. 3.2 CNN 5 5 1 6 2 14 2 2 Full-Connect 400 0.1 10 1 1000 CNN 0.1 10 epoch 100 3.3 3.3.1 CNN CNN 3.2 3.2 3.2 23

3.3. 3.2: 24

3.3. 3.3 1 2 3.3 epoch 2 epoch 3.3: 3.4(a) 3.4(b) 3.4(a) 3.4(b) 25

3.3. 1000 Convolutional Neural Network Multi Layer Perceptron 100 10 1 Cross entropy 0.1 0.01 0.001 0.0001 1e-005 50 100 150 200 250 300 350 400 450 500 epoch 100 Convolutional Neural Network Multi Layer Perceptron Miss rate[%] 10 1 50 100 150 200 250 300 350 400 450 500 epoch 26 3.4:

3.3. epoch 3.5 3.5 1 2 3.5 3.5: 3.4(a) epoch 3.6 3.6 27

3.4. CNN 100 Convolutional Neural Network Multi Layer Perceptron 1000 Convolutional Neural Network Multi Layer Perceptron 100 10 1 Miss rate[%] 10 Cross entropy 0.1 0.01 0.001 0.0001 1 50 100 150 200 250 300 350 400 450 500 epoch 1e-005 50 100 150 200 250 300 350 400 450 500 epoch 3.6: 3.4 CNN 3.4.1 CNN CNN CNN 28

3.4. CNN CNN CNN 3.7 3.7: 3.4.2 CNN 3.1 - + 29

3.4. CNN 3.1: -5 +5 0 5 10 15 20 25 30 1.1 1.5 0.5 0.9 3.8(a) 3.8(c) CNN (MLP) 3.8(a) 3.8(c) CNN 3.9 3.9 3.8(a) 3.8(c) 10% 3.9 1 2 3.9 1 2 1 30

3.4. CNN 100 90 80 70 [%] 60 50 40 MLP CNN 30 20 10 30 0-10 -5-4 -3-2 -1 0 +1 +2 +3 +4 +5 +10 [pixel] 25 20 [%] 15 MLP CNN 10 5 0 80 0 1 2 3 4 5 10 15 20 25 30 [ ] 70 60 [%] 50 40 30 MLP CNN 20 10 0 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 3.8: 31

3.4. CNN 3.9: 32

3.4. CNN CNN 3.10 3.10 1 CNN 2 3.10 CNN 3.10: 3.11 CNN 3.11 1 CNN 5pixel 33

3.4. CNN 3.11 2 CNN 20 3.11: 3.13(a) CNN 3.13(b) 3.13(b) 3.13(a) 3.13(b) CNN CNN 34

3.4. CNN 3.2 CNN CNN 3.2 CNN 3.2: 2pixel 2pixel 20 MLP 25.79 23.63 11.41 CNN 3.98 4.80 6.27 CNN 2.11 1.80 4.38 CNN epoch 3.13 epoch 3.13 CNN CNN epoch 3.2 CNN epoch 35

3.4. CNN 100 10 Parallel Shift Learning CNN Rotation Learning CNN No Random Learning CNN 1 0.1 Cross entropy 0.01 0.001 0.0001 1e-005 1e-006 20 40 60 80 100 epoch 100 Parallel Shift Learning CNN Rotation Learning CNN No Random Learning CNN 10 Miss rate[%] 1 0.1 10 20 30 40 50 60 70 80 90 100 epoch 36 3.12: CNN

3.4. CNN 3.13: epoch 37

Convolutional Neural Network 1 2 Deep Learning Convolutional Neural Network Convolutional Neural Network Deep Learning Convolutional Neural Network Convolutional Neural Network 3 Convolutional Neural Network Convolutional Neural Network Convolutional Neural Network Convolutional Neural Network 38

Convolutional Neural Network 39

40

[1] D. Rumelhart, G. Hintont, and R. Williams, Learning representations by backpropagating errors, Nature, pp.533-536, 1986. [2] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, CoRR, vol.abs/1207.0580, 2012. [3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems 25, pp.1106 1114, 2012. [4] N. Dalal, and B. Triggs, Histograms of oriented gradients for human detection, International Conference on Computer Vision & Pattern Recognition, vol.2, pp.886-893, 2005. [5] D. G. Lowe, Object recognition from local scale-invariant features, Proceedings of the International Conference on Computer Vision-Volume 2 - Volume 2, pp.1150, IEEE Computer Society, 1999. [6] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, Backpropagation applied to handwritten zip code recognition, Neural Computation, vol.1, pp.541-551, 1989. [7] J. W. Kimball, Kimball s biology pages,, 2000, http://www.dls.ym.edu.tw/ol biology2/ultranet/visualprocessing.html. 41

[8] K. Fukushima, and S. Miyake, Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position, Pattern Recognition, vol.15, no.6, pp.455 469, 1982. [9] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, vol.65, no.6, pp.386-408, 1958. [10] S. Patrice, V. Bernard, L. Yann, and D. John S, Tangent Prop: a formalism for specifying selected invariances in adaptive networks, NIPS, pp.895 903, 1991. [11] B. Y. D. H. Hubel, and A. D. T. N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cats visual cortex, The Journal of physiology, vol.160, pp.106 154, 1962. 42

Convolutional Neural Network () 2014 3