Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Similar documents
kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

30

TOP URL 1

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

量子力学 問題

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Part () () Γ Part ,

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


chap9.dvi

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

構造と連続体の力学基礎

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

2000年度『数学展望 I』講義録

201711grade1ouyou.pdf

( )

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

: , 2.0, 3.0, 2.0, (%) ( 2.

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou


all.dvi

DVIOUT-fujin

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

QMI_09.dvi

QMI_10.dvi

Z: Q: R: C:

meiji_resume_1.PDF

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

Z: Q: R: C: sin 6 5 ζ a, b

keisoku01.dvi

05Mar2001_tune.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

高知工科大学電子 光システム工学科

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Maxwell

Untitled

IA

A

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

Microsoft Word - 11問題表紙(選択).docx

newmain.dvi

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

第1章 微分方程式と近似解法

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0



p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

LLG-R8.Nisus.pdf

TOP URL 1

( ) ) AGD 2) 7) 1

QMII_10.dvi

PDF

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Note.tex 2008/09/19( )

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

振動と波動

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

OHP.dvi

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

December 28, 2018

KENZOU

~nabe/lecture/index.html 2

TOP URL 1

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

pdf

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

基礎数学I

Transcription:

Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................ 5 3.2 HBT..................................... 6 3.3 Mandel.................................. 7 3.4................................................ 9 4 Hanbury-Brown Twiss 1 4.1................................. 1 4.2.................................... 11 4.3.......................................... 11 4.4...................................... 13 4.5........................................ 13 4.6............ 14 4.7 HBT................................................. 15 4.8 g 2....................................... 15 4.9 g 2..................................... 16 4.1 g 2........................................ 16 5 16 5.1 Helmholtz-Kirchhoff.................................... 16 A 17 1

1 1 Hanbury-Brown Twiss Mark Fox Quantum Optics An Introduction : : kawahara@eps.s.u-tokyo.ac.jp (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2.1 van Cittert - Zernike (mutual coherence function) Γ(Q 1, Q 2, τ) V (Q 1, t)v (Q 2, t + τ) (1) (complex degree of coherence) γ(q 1, Q 2, τ) V (Q 1, t)v (Q 2, t + τ) I(Q1 )I(Q 2 ) (2) 1 2

Sm Rm2 Rm1 P2 P1 1: S m P 1, P 2 1 S m A m P 1 P 2 V m1 (t) A m (t R m1 /c) e iω(t Rm1/c) R m1 (3) V m2 (t) A m (t R m2 /c) e iω(t Rm2/c) R m2 (4) P 1 P 2 Γ(P 1, P 2, ) V (P 1 )V (P 2 ) (5) m A m(t R m1 /c)a m (t R m2 /c) e iω(rm2 Rm1)/c R m1 R m2 (6) R m1 R m2 2πc/ ω A m Γ(P 1, P 2, ) m (7) A m(t)a m (t) e iω(r m2 R m1 )/c R m1 R m2 (8) I(S) e iω(r 2 R 1 )/c R 1 R 2 ds (9) R m1 R 1 R m2 R 2 1 γ(p 1, P 2, ) I(S) e iω(r2 R1)/c ds (1) I(P1 )I(P 2 ) R 1 R 2 I(S) I(P j ) Γ(P j, P j, ) ds (11) van Cittert-Zernike (α, β) P 1,P 2 (X 1, Y 1 ), (X 2, Y 2 ) R 2 j γ(p 1, P 2, ) eiψ dαdβi(α, β)e ik(αx+βy) dαdβi(α, β) (12) ψ k[(x2 2 + Y 2 2 ) (X 2 1 + Y 2 1 )] 2R (13) 3

x X 2 X 1, y Y 2 Y 1 P 1, P 2 ( ) mutual coherence ( ) P 1 P 2 2.2 mutual coherence mutual coherence 12 ρ b γ(p 1, P 2, ) 2J 1(ν) e iψ (14) ν ν kρb (15) γ(p 1, P 2, ) 2J 1(ν) ν mutual coherence (16) b.61 λ ρ (17) 6.3 mas ( ).5 µ m.5 1 6.61 1m.63π/(36 18) (18) 1 m P 1 P 2 Q V (Q, t) k 1 V (P 1, t t 1 ) + k 2 V (P 2, t t 2 ) (19) I(Q) V (Q, t)v (Q, t) (2) k 1 2 V (P 1, t t 1 )V (P 1, t t 1 ) + k 2 2 V (P 2, t t 2 )V (P 2, t t 2 ) + 2Re[ k 1 k 2 V (P 1, t t 1 )V (P 2, t t 2 ) ] (21) k 1 2 I(P 1 ) + k 2 2 I(P 2 ) + 2 k 1 k 2 Re[Γ(P 1, P 2, t 1 t 2 )] (22) I (1) (Q) + I (2) (Q) + 2 I (1) (Q)I (2) (Q)Re[γ(P 1, P 2, t 1 t 2 )] (23) 4

(I (j) (Q) ) γ(p 1, P 2, t 1 t 2 ) A(t) Φ(t) δ ντ 2π(R 2 R 1 )/λ 2I (1) (Q)(1 ± γ(p 1, P 2, t 1 t 2 ) ) (24) (I (1) I (2) ), mutual coherence visibility γ(p 1, P 2, τ) I max(p ) I min (P ) I max (P ) + I min (P ) (25) τ visibility γ(p 1, P 2, ) P2 Q P1 2: 3 Hanbury-Brown Twiss ( ) visibility mutual coherence ( ) mutual coherence phase P2 P1 3: 3.1 5 Hanbury-Brown () 5

I(r j, t) I(r j, t) I(r j, t) (26) I(r 1, t) I(r 2, t + τ) (I(r 1, t) I(r 1, t) )(I(r 2, t + τ) I(r 2, t + τ) ) (27) I(r 1, t)i(r 2, t + τ) I(r 1, t) I(r 2, t + τ) (28) V (r 1, t)v (r 1, t)v (r 2, t + τ)v (r 2, t + τ) V (r 1, t)v (r 1, t) V (r 2, t + τ)v (r 2, t + τ) (29) V x j Lsserlis x 1x 2 x 3x 4 x 1x 2 x 3x 4 + x 1x 4 x 2 x 3 I(r 1, t) I(r 2, t + τ) V (r 1, t)v (r 2, t + τ) V (r 2, t + τ)v (r 1, t) (3) Γ(r 1, r 2, τ)γ(r 1, r 2, τ) (31) Γ(r 1, r 2, τ) 2 (32) 2 3.2 HBT Hanbury-Brown Twiss Hanbury-Brown Narrabri Stellar Intensity Interferometer 32 (Hanbury-Brown, Davis, Allen 1974) 32 mas ζp up.41 ±.3 mas (1969 ) 4 Bigot et al. 211.445 mas (33) g 2 ( ) g 2 1 g 2 (τ) γ(r 1, r 2, τ) 2 + 1 (33) g 2 (τ) I(r 1, t)i(r 2, t + τ) (34) I(r 1, t) I(r 2, t + τ) 2 Γ(r 1, r 2, τ) Γ (r 1, r 2, τ) 6

beam spliter 2 PhotoMultiplier 1 PhotoMultiplier correlator 4: HBT 3.3 Mandel Mandel HBT Mandel t-t + t I(t) V (t)v (t) α P (t) αi(t) t (35) t t + T n p(n, t, T ) T T/ t t r1,..., t rn ( ) 1 T/ t T/ t T/ t rn T/ t p(n, t, T ) lim... (α t) n I(t t n! r ) i [1 αi(t i)δt] n j1 [1 αi(t (36) rj)δt] r1 r2 1 3 lim { 2} t n! 1 rn rr1 (37) 1 1 no(δt) 1 (38) n [ T/δt ] n t+t 2 αi(t r1 )δt α I(t )dt (39) 3 exp r 1 [ α t+t t I(t )dt ] t (4) p(n, t, T ) 1 n! [αw (t, T )]n e αw (t,t ) (41) W (t, T ) t+t t I(t )dt (42) 7

I W p(w ) { } 1 P (n, t, T ) p(n, t, T ) dw p(w ) n! [αw (t, T )]n αw (t,t ) e (43) p(n, t, T ) dw p(w )P p (n, W ) (44) ( dw p(w )f(w ) f(w ) ) Mandek {} P p (n, W ) t t + T n np(n, t, T ) n dw p(w ) np p (n, W ) (45) n dw p(w )αw (46) αw (47) n 2 np(n, t, T ) dw p(w ) n 2 P p (n, W ) (48) n n dw p(w )(αw + α 2 W 2 ) (49) αw + α 2 W 2 (5) ( n) 2 n 2 n 2 αw + α 2 W 2 α 2 W 2 (51) n + α 2 [ W ] 2 (52) Intensity ( n) 2 > n ( )( n) 2 n ( n) 2 < n () HBT Mandel n 1 n 2 n 1 n 2 p 1 (n 1, t, T )p 2 (n 2, t, T ) (53) n 1 n 2 n 1 p 1 (n 1, t, T ) n 1 n 2 p 2 (n 2, t, T ) α 1 α 2 W 1 W 2 (54) n 2 n 1 n 2 n 1 n 2 n 1 n 2 α 1 α 2 W 1 W 2 (55) W j W j W j (56) W 8

3.4 E n (n + 1/2)ħω (57) n : P ω (n) exp ( E n /kt ) n exp ( E n/kt ) (58) x n n xn (59) x n (1 x) (6) x exp ( ħω/kt ) (61) n xn 1/(1 x) (x < 1) n np ω (n) (62) n nx n (1 x) (63) n (1 x)x d dx (1 x)x d dx x 1 x n P ω (n) n Bose-Einstein P ω (n) 1 n + 1 ( ) x n n ( 1 1 x 1 exp (ħω/kt ) 1 ) (64) (65) (66) (67) (68) ( ) n n (69) n + 1 ( n) 2 (n n) 2 P ω (n) n + n 2 (7) n N m (Mandel & Wolf 95) ( n) 2 n + n 2 /N m (71) 68 HBT 9

4 Hanbury-Brown Twiss HBT 4.1 H ψ, ϕ H (ψ, ϕ) ψ ϕ (72) {e i } ψ ϕ n ξ i e i (73) i1 n η i e i (74) i1 ψ, ϕ {ξ 1, ξ 2,,,, ξ n } {η 1, η 2,,,, η n } (72) {ξ1, ξ2,,,, ξn} T.{η 1, η 2,,,, η n } (75) ψ, ϕ ϕ ϕ H ( ϕ H) H (dual space) H ϕ C ψ ( ψ H ) H C (72) ( ψ, ϕ ) ψ ϕ C (76) H ψ H ψ ϕ ϕ ( ϕ ) ϕ (77) ( ϕ ) ϕ (78) 1

Ψ Â Ψ ( Ψ e iθ Ψ ) : Ψ Â Ψ Ψ e iθ Âe iθ Ψ Ψ Â Ψ (79) { Ψ e iθ Ψ π θ π} (8) Fiber( ) Fiber 1 1 ˆρ Ψ Â Ψ i Ψ e i e i Â Ψ i e i Â Ψ Ψ e i Tr(ˆρ) Tr(ˆρÂ) (81) { e i } ˆρ Ψ Ψ Ψ Ψ (82) Tr( ˆBĈ) e i  ˆBĈ e i e i  e j e j ˆBĈ e i i i j e j ˆBĈ e i e i  e j e j ˆBĈ e j Tr( ˆBĈÂ) (83) j i j Trace { Ψ 1, Ψ 2,... Ψ k,... Ψ N } p k p k Ψ k Â Ψ k p k Ψ k e i e i Â Ψ k ( ) e i  p k Ψ k Ψ k e i k k i i k Tr(ˆρ) Tr(ˆρÂ) (84) ˆρ p k Ψ k Ψ k k (85) 4.2 4.3 α â α α α (86) 11

1: creation and annihilation operators : â n n + 1 n + 1 â n n n 1 â [â, â ] 1 number operator : ˆn â â ˆn n n n Hamiltonian : Ĥ ħω (ˆn ) + 1 2 Ĥ ψ ħω ( n + 2) 1 ψ α n n α (87) n n α (86) n 1 n 1 â α (â n 1 ) α ( n n ) α n n α (88) α n 1 α (89) n α α n n 1 α αn n! α (9) α α n α n n! n (91) 12

α 1 α α 2 α 2 n m n m α 2 ( α 2 ) n n! n α 2 exp ( α 2 ) α exp ) ( α 2 2 α n (α ) m n! m! m n α n (α ) m n! m! δ m,n (92) (93) α exp ) ( α 2 α n n (94) 2 n n! 4.4 4.5 ˆρ n P n n n P n e βħωn n e βħωn (1 e βħω )e βħωn β 1 kt (95) Thermal light n Tr(ˆρ ˆn) m ˆρ ˆn m mp n m n 2 mp n δ n,m np n m n m n n n ne βħωn (1 e βħω ) e βħω 1 e βħω (96) 13

n xn (1 x) 1 n nxn x(1 x) 2 e βħω n 1 + n (97) Thermal light ˆρ 1 1 + n m ( ) m 1 m m (98) 1 + n 4.6 ˆρ dα 2 P (α) α α (99) P P (α) 1 2 π n e α / n (1) Gaussian 1 ˆρ dα 2 e α 2 / n α α π n 1 2π dr dθe r2 / n e r2 rm+n+1 e i(m n)θ m n π n m n m! n! 2π dre (1+ n )r 1 2 r 2m+1 m m π n m! m 1 n ( ) m n dse s s m 1 m m n 1 + n 1 + n m! 1 1 + n m m ( n 1 + n ) m m m (11) (94) α re iθ 2π e i(m n)θ 2πδ m,n s r 2 (1 + n )/ n dse s s m m! 14

4.7 HBT HBT 4 g 2 (τ) g 2 (τ) n 1(t)n 2 (t + τ) n 1 (t) n 2 (t + τ) (12) g 2 (τ) â 1 (t)â 2 (t + τ)â 2(t + τ)â 1 (t) â 1 (t)â 1(t) â 2 (t + τ)â 2(t + τ) (13) normal ordering (Mandel & Wolf 95) â 1 â / 2 (14) â 2 â / 2 (15) â 1â1 ψ â â ψ /2 ψ ˆn ψ /2 (16) â 2â2 ψ â â ψ /2 ψ ˆn ψ /2 (17) â 1â 2â2â 1 ψ â â ââ ψ /4 (18) ψ â (â â 1)â ψ /4 (19) ψ ˆn (ˆn 1) ψ /4 (11) (111) g 2 (τ) ˆn(ˆn 1) ˆn 2 (112) ( ) 4.8 g 2 ψ photon number state n g 2 (τ) n(n 1) n 2 < 1 (113) ( n) 2 n (ˆn n) 2 n (114) n ˆn 2 n n 2 (115) 15

4.9 g 2 coherent state α â α α α α â â ââ α α 4 (116) α â â α α 2 (117) g 2 (τ) 1 (118) ( n) 2 α (ˆn n) 2 α (119) α ˆn 2 α n 2 (12) α â ââ â α n 2 (121) α â â + â â ââ α n 2 (122) (n + n 2 ) n 2 n (123) 4.1 g 2 5 5.1 Helmholtz-Kirchhoff Helmholtz-Kirchhoff P U(P ) V (x, t) U(x)e iωt (124) ( 2 + k 2 )U (125) U, U Green dσ (U U n U U ) dv (U 2 U U 2 U) (126) n σ V σ V σ n 125 P U (x) eiks s (127) 16

5: s P 5 σ S + S S P S ( ds U (eiks /s) (e iks /s) U ) n n [ ds (e iks /s)(ik 1/s)U (e iks /s) U ] S n 4πU(P ) [radius of S ] (128) Helmholtz-Kirchhoff U(P ) 1 ds 4π S [ U n ( e iks s ) ( e iks s ) ] U n (129) A V (r) (t) a(ν) cos (ϕ(ν) 2πνt) V (r) (t) 3 V (t) V (r) (t) + iv (i) (t) V (i) (t) 3 dν a(ν) cos (ϕ(ν) 2πνt) (13) dν a(ν)e i(ϕ(ν) 2πνt) (131) dν a(ν) sin (ϕ(ν) 2πνt) (132) 17

ν ν δν/ν 1 ν ν ν V (t) A(t)e i(φ(t) 2πνt) (A(t) e iφ(t) ) e 2πiνt (133) A Φ (131) (133) A(t) e iφ(t) { V (t) (A(t) e iφ(t) ) e 2πiνt µ [ dµ a(µ) e iϕ(µ)] e 2πµt (134) µ ν ν (135) µ dµ [a(µ) e iϕ(µ)] } e 2πµt e 2πiνt (136) a(µ) µ ν ν {} µ ν ν ν e 2πiνt ν µ (133) A(t) e iφ(t) A(t) Φ(t) ν A(t) Φ(t) 18