Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Similar documents
Introduction 2 / 43

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

YITP50.dvi

Einstein ( ) YITP

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

TOP URL 1

弦の場の理論における 位相的構造と反転対称性

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

(Exact Solutions and Tachyon Condensation in String Field Theory) 15 (Syoji Zeze)

kougiroku7_26.dvi

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

arxiv: v1(astro-ph.co)

TOP URL 1

SUSY DWs

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

main.dvi

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

中央大学セミナー.ppt

( )

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

,,..,. 1


N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P


Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence


D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

all.dvi

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

meiji_resume_1.PDF

gr09.dvi

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

nenmatsu5c19_web.key

³ÎΨÏÀ

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

日本統計学会誌, 第44巻, 第2号, 251頁-270頁

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

QMII_10.dvi

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w


untitled

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

ssastro2016_shiromizu

201711grade1ouyou.pdf

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

量子力学 問題

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

Microsoft PowerPoint - 小路田俊子 [互換モード]

keisoku01.dvi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

all.dvi

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

Gmech08.dvi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

SO(4, C) SL(2, C) SL(2, C) SL(2, C) positive chirality spinor : ψ a, negative chirality spinor : ψȧ. (1) SL(2,

『共形場理論』

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

TOP URL 1

Vacuum charge Q N

Transcription:

( ) 2011 5 14 at 1 / 38

Introduction? = String Field Theory = SFT 2 / 38

String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38

SFT with Lorentz & Gauge Invariance SFT Lorentz ( Yang-Mills ) Φ[X(σ), t] = Φ[X µ (σ), b(σ), c(σ) ] t X 0 (σ) } {{ } ghost t X 0 (σ) 4 / 38

Φ S(Φ): SFT S(Φ) = 1 2 ΦQ BΦ + 1 3 Φ3 +... ( ) : δ Λ Φ = Q B Λ + Φ Λ Λ Φ +... δ Λ S(Φ) = 0 Λ = Λ[X µ (σ), b(σ), c(σ)] 5 / 38

( / ) : 6 / 38

SFT Covariant & Gauge-invariant SFT ( 85 ) Yang-Mills ( ) (Effective potential, Instanton, Large-N,...)! 7 / 38

SFT ( ) Tachyon condensation (1999 )/ (2005) SFT 8 / 38

SFT Light-cone SFT by Kaku-Kikkawa ( 74) BRST 1st quantization (Kato-Ogawa 83) Batalin-Vilkovisky formalism ( 83) Covariant & Gauge Invariant SFT Cubic SFT (Witten) HIKKO (Hata-Itoh-Kugo-Kunitomo-Ogawa) Non-Polynomial closed SFT (S-Z,K-K-S) ( 85 ) Boundary SFT (Witten, 92) Tachyon condensation in SFT ( 99 ) for tachyon vacuum (Schnabl, 2005) 9 / 38

Plan of this talk 1. Introduction 2. SFT 3. Tachyon condensation 4. SFT Super-SFT ( ) Up to sign (or Up to factor) 10 / 38

SFT SFT Batalin-Vilkoviski(BV) systematic ( SFT BV ) 11 / 38

BV SFT : index I : : : String field: : ( X µ (σ), b(σ), c(σ) ) = I DX(σ)Db(σ)Dc(σ) = Φ[X µ (σ), b(σ), c(σ)] = Φ I δ δφ[x(σ), b(σ), c(σ)] = Φ I I 12 / 38

( )BV SFT action S(Φ) BV : ( )BV ( ) 2 S = 0 I Φ I BV : ( = ) Gauge invariance of SFT action S(Φ) Procedure of Gauge-Fixing and BRST invariance 13 / 38

Λ[X µ (σ), b(σ), c(σ)] = Λ I 2 S ( ) : δ Λ Φ I = Λ J Φ I Φ J ( I ): δ Λ S(Φ) = S δ Λ Φ I = S Φ I Φ I ( S = 1 2 Λ J Φ J ) 2 J 2 S Λ J Φ I Φ J = 0 Φ } {{ I } = 0 (BV eq) 14 / 38

Gauge BRST BV gauge S(Φ) 1. Gauge Ŝ(φ) 2. BRST δ B with BRST : δ B Ŝ(φ) = 0 (On-shell) Nilpotency: (δ B ) 2 = 0 up to EOM ( ) 15 / 38

BV S(Φ): S(Φ) = 1 2 Q IJΦ I Φ J + V (3) IJK Φ IΦ J Φ K + V (4) Φ IJKL IΦ J Φ K Φ L +... BV : ( S/ Φ I ) 2 = 0 Q IJ Q JK = 0 Q = Q Kato-Ogawa B (3) Q II V + Q I JJ V (3) + Q JK IJ KK V (3) = 0 K IJK I J,K,L Q II V (4) I JKL + QV (N) + N 1 M=3 V (3) V (3) IJM (I,J,K,L) V (N M+2) V (M) = 0 MKL = 0 16 / 38

1 2 Φ IQ IJ Φ J 1 2 Φ IQ IJ Φ J with Q = Q Kato-Ogwa Q B = π δ dσ 0 δb [ 1 2 ( ( δ δx ) 2 ) ( + (X ) 2 + i c b + δ δb B δ δc )] ( +ic X δ δx + δ ( δ c δc + δb Fock space : Φ(x, b 0 ) = b φ(x) 0 + ψ(x) } {{ } 0 (Siegel-gauge) b 0 : b(σ) x µ : X µ (σ) = string φ(x) (Open SFT): φ(x) = 0 t(x) + α µ 0 1 A µ(x) + α µ 0 2 W µ(x) + α µ 1 αν 1 0 v µν(x) + c 1 b 1 0 u(x) +... ) ) c 17 / 38

Φ Q B Φ = = { d 26 x d 26 x φ(x) L0 φ(x) 2 + (mass) 2 t( 2 1)t + A µ ( 2 )A µ + W µ ( 2 + 1)W µ } + v µν ( 2 + 1)v µν u( 2 + 1)u +... t : Tachyon (m 2 = 1) A µ : Photon (m 2 = 0) W µ, v µν, u,... : Massive (m 2 1) 18 / 38

BV V (n) Cubic Open SFT (Witten, 86) V (3) = HIKKO Open SFT ( 86): Φ[X µ (σ), b(σ), c(σ), α] V (3) =, V (4) = dα string-length HIKKO Closed SFT ( 86) V (3) = 19 / 38

BV V (n) Non-Polynomial Closed SFT (Saadi-Zwiebach, Kugo-Kunitomo-Suehiro, 89) V (3) =, V (N=4,, ) = d 2N 6 l... Boundary SFT (Open SFT, 92) [ ] SFT action is given implicitly as a solution to 2π ds = 1 2 0 dθdθ do(θ) { Q B, O(θ ) } λ 20 / 38

V (3) in Cubic SFT V (3) = V (3) V (3) (3) +V V (3) =0 IJM MKL LIM MJK I V V + M =0 J M L K I J V V L K? I J L K = I J L K M M (I, J, K, L) 21 / 38

BV S(Φ) String Feynman (=world sheet) Propagator + Vertex : Light cone, HIKKO Witten 22 / 38

Tachyon condensation in SFT SFT (?) (?) 23 / 38

Asoke Sen in bosonic (1998) T 25 U D25-brane D25 : T 25 = Φ C Φ D25-brane U(Φ C ) = T 25 1 2π 2 α 13 24 / 38

Off-shell ( ) SFT! Level truncation in CSFT ( 88, 99 ) (mass) 2 = L 1 (L = Level) φ = }{{} 0 t + c 1 b 1 0 u + α µ 1 αµ 0 1 v +... } {{ } level-0 level-2 Lorentz : (t, u, v,...) 25 / 38

Level truncation L U(Φ C )/T 25 0 0.684616 2 0.959377 4 0.987822 6 0.995177 8 0.997930 10 0.999182 12 0.999822 14 1.000174 16 1.000375 18 1.000494 20 1.000563 L = 20 Takahashi- Kishimoto(2009) 26 / 38

for : - (2002): U(Φ C ) Schnabl (2005) EOM Chern-Simons EOM: Q B Φ C + Φ C Φ C = 0 ( 1 S(Φ C ) = 2 Φ CQ B Φ C + 1 ) 3 Φ3 C = 1 6 Φ 3 C Φ C = UQ B U 1 (pure-gauge) U U(Φ C ) = T 25 No open-string modes around Φ = Φ C 27 / 38

SFT SFT : 1. SFT( Closed SFT) 2. SFT 28 / 38

BV BV Closed SFT action (HIKKO, Non-polynomial) Loop! S-matrix Unitarity BV SFT action : BV ( ) 2 S = i 2 S I Φ I I Φ I Φ I 29 / 38

BV S(Φ) BV SFT Ŝ(φ) BRST δ B SFT : Dφ exp ( ) i Ŝ(φ) measure Dφ BRST δ B { i Ŝ(φ) + ln Dφ } = 0 30 / 38

BV S(Φ) = S (0) (Φ) + S } {{ } (1) (Φ) + 2 S (2) (Φ) +... BVeq!!!... ( ) 31 / 38

: SFT= BV S (0) (Φ) S-matrix unitariy? vertex V (N) x µ = 2π dσx µ (σ) : 0 ( ) 2 ( ) 2 V (N) exp = x µ exp + 2 x 0 [ : QB ( / x µ ) 2 + ] m 2 SFT 32 / 38

Cubic SFT : : Cubic SFT S CSFT = 1 2 ΦQ BΦ + 1 3! V (3) IJK }{{} Φ IΦ J Φ K t =X 0 ( π 2 ) t (?) 2 S CSFT Φ I Φ I = 0 33 / 38

SFT? SFT ( closed SFT) ( ) : S(Φ) = 1 2 ΦQ BΦ + V (3) IJK Φ IΦ J Φ K +... Q B η µν graviton : Φ (x) = α µ 1 αν 1 0 h µν (x) +... g µν (x) η µν + h µν (x) 34 / 38

Einstein-Hilbert action S EH = d D x g R SFT! (Pregeometrical SFT) V (N) ( ) V (N 4) = 0 SFT Q = 0 BV eq V (3) S Pregeom. = 1 3! V (3) IJK Ψ IΨ J Ψ K V (3) HIKKO = 35 / 38

Q = Q B SFT Pregeom. SFT Ψ : Ψ = Ψ + Φ S Preg. = 1 2 Φ I V (3) IJK Ψ K } {{ } (Q B ) IJ Φ J + 1 3! V (3) IJK Φ IΦ J Φ K EOM: V (3) IJK Ψ J Ψ K = 0 Ψ 36 / 38

... Pregoemetrical SFT! 37 / 38

... Pregoemetrical SFT! 37 / 38

... Pregoemetrical SFT! /? 37 / 38

38 / 38