Similar documents
(Stochastic Thermodynsmics) Langevin Langevin

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

Morse ( ) 2014

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

Z: Q: R: C: sin 6 5 ζ a, b

newmain.dvi

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

gr09.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

untitled


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

201711grade1ouyou.pdf

2011de.dvi

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

v er.1/ c /(21)

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

tokei01.dvi


() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

第10章 アイソパラメトリック要素

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google


u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

pdf

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

Part () () Γ Part ,

30

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

( ) Loewner SLE 13 February


Microsoft Word - 信号処理3.doc

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

keisoku01.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Grushin 2MA16039T

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

v_-3_+2_1.eps


.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

chap9.dvi

Dynkin Serre Weyl

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

DVIOUT

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x


春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(


Note.tex 2008/09/19( )

December 28, 2018

画像工学特論

all.dvi




1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =



6.1 (P (P (P (P (P (P (, P (, P.

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

量子力学 問題

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

tnbp59-21_Web:P2/ky132379509610002944

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

Transcription:

2011 8 26

3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy ) 25 3.1......................... 25 3.2................................... 25 3.3................................... 25 3.4 Fokker-Planck....................... 25 II 27 4 29 4.1................................ 29 4.2 Fokker-Planck....................... 29 5 31 5.1.................................. 31 5.2................................ 31

I

7 1 1.1 Markov t 1 τ 1... t 1,..., t n x 1,..., x n p( x 1, t 1 ;... ; x n, t n ) (1.1) p( x 1, t 1 ;... y 1, τ 1 ;... ) p( x 1, t 1 ;... ; t 1, τ 1 ;... ) p( y 1, τ 1 ;... ) (1.2) Markov Markov p( x 1, t 1 ;... y 1, τ 1 ;... ) = p( x 1.t 1 ;... y 1, τ 1 ) (1.3) ( ) Chapman-Kolmogorov Markov p( x 1, t 1 x 3, t 3 ) = d x 2 p( x 1, t 1 x 2, t 2 )p( x 2, t 2 x 3, t 3 ) (1.4)

8 1 ϵ > 0 lim dt +0 1 d xp( x, t + dt z, t) = 0 (1.5) dt x z >ϵ (Lindeberg ) Chapman-Kolmogorov i)ii)iii) i) p( x, t + t z, t) lim = W ( x z, t) t +0 t (1.6) ( x z < ϵ x, z, t ) ii) iii) lim t +0 lim t +0 1 t 1 t x z <ϵ x z <ϵ d x(x i z i )p( x, t + t z, t) = A i ( z, t) + O(ϵ) (1.7) d x(x i z i )(x j z j )p( x, t + t z, t) = B ij ( z, t) + O(ϵ) (1.8) Chapman-Kolmogorov p( z, t y.t ) t = [A i ( z, t)p( z, t y, t )] + 1 2 [B ij ( z, t)p( z, t y, t )] z i i 2 z i,j i z j + d x[w ( z x, t)p( x, t y, t ) W ( x z, t)p( z, t y, t )] (1.9) ϕ( η) < e i η ˆ x >= d xp( x)e i η x (1.10)

1.1 Markov 9 1 (1) (1.6) W ( x z, t) = 0 (for x z) (1.11) 0 2 (2) (1) p(x, t + dt z, t) = 1 (x z)2 e 2σ 2 dt 2πσ2 dt (Wiener ) (2) p(x, t + dt z, t) = dt π[(x z) 2 + dt 2 ] (Cauchy ) 3 Chapman-Kolmogorov (1) (1.6),(1.7) 2 3 1 d x(x i z i )(x j z j )(x k z k )p( x, t + t z, t) = C ijk ( z, t) + O(ϵ) t lim t +0 x z <ϵ C( α, z, t) ijk (1.12) α i α j α k C ijk ( z, t) (1.13) C C( α, z, t) = O(ϵ) 4 Chapman-Kolmogorov (2) Chapman-Kolmogorov 2 f( z) d d xf( x)p( x, t y, t ) (1.14) dt

10 1 (1) (1.14) 1 (1.14) = lim t +0 t { d x d zf( x)p( x, t + t z, t)p( z, t y, t ) d zf( z)p( z, t y, t )} (1.15) (2) (1.15) 1 (1.15) = lim t +0 t { d xd z[ (x i z i ) f + 1 (x i z i )(x j z j ) 2 f ] x z <ϵ z i i 2 z i,j i z j + + + x z <ϵ x z ϵ x z <ϵ p( x, t + t z, t)p( z, t y, t ) (1.16) d xd z x z 2 R( x, z)p( x, t + t z, t)p( z, t y, t ) (1.17) d xd zf( x)p( x, t + t z, t)p( z, t y, t ) (1.18) d xd zf( z)p( x, t + t z, t)p( z, t y, t ) (1.19) d xd zf( z)p( x, t + t z, t)p( z, t y, t )} (1.20) R( x, z) Taylor f( x) = f( z) + i f( z) (x i z i ) + 1 2 f( z) (x i z i )(x j z j ) + x z 2 R( x, z) z i 2 z i,j i z j (3) (1.16) d z[ A i ( z) f + 1 B ij ( z) 2 f ]p( z, t y, t ) + O(ϵ) (1.21) z i i 2 z i,j i z j (4) (1.17) (1.17) = o(ϵ) (5) (1.18),(1.19),(1.20) d xd zf( z)[w ( z x, t)p( x, t y, t ) W ( x z, t)p( z, t y, t )] (1.22) x z ϵ (6) Chapman-Kolmogorov 5 Wiener p(x, t + dt z, t) = 1 (x z)2 e 2σ 2 dt 2πσ2 dt

1.1 Markov 11 Chapman-Kolmogorov p(x 0 ) = δ(x 0 ) 6 Wiener 5 7 Gau d ˆX dt = γ ˆX + ˆξ (1.23) ˆξ p(ξ) = 1 ξ2 e 2σ 2 dt (1.24) 2πσ2 dt A(x, t), B(x, t), W (x z, t) *1 Chapman- Kolmogorov 8 Cauchy p(x, t + dt z, t) = dt π[(x z) 2 + dt 2 ] Chapman-Kolmogorov 9 Poion p(x, t + dt z, t) = λδ(z + 1 x)dt (1.25) Chapman-Kolmogorov 10 Poion 9 11 *1 d ˆX dt = γ ˆX + ˆξ (1.26)

12 1 ˆξ ξ 4 p(ξ) = (4dt) 1 4 σγ( 1 4 ) e 2σ 4 dt (1.27) A(x, t), B(x, t), W (x z, t) Chapman- Kolmogorov dt +0 14 dt +0 12 Lévy Gau Gau Lévy 13 Lévy 12 Lévy 14 -Lévy Gau Poion ( : 13)

13 2 Gau 2.1 [, v] ( < v) n t 0 = < t 1 = 1 n (v ) < < t i = i n (v ) < < t n 1 = v  <  > dap (a)a n + dt v n 0 Gau Gau * 1 dt ξ p(ξ) = 2 2σ 2 dt (2.1) 2πσ 2 e Wiener 1 Gau ˆξ(t) Wiener Ŵ (t) t dt ˆξ(t ) = lim n + n i=1 t n ˆξ(t i ) (2.2) dŵ (t) = ˆξ(t)dt Wiener (1) < dŵ >= 0 (2) < dŵ 2 >= dt (3)dŴ 2 = dt (4)dŴ n = 0 (n > 2) (2.3) *1 σ = 1 Gau

14 2 Gau (3),(4) Mean Square Mean Square (M S) lim n + ˆX n = ˆX lim < ( ˆX n ˆX) 2 >= 0 (2.4) n + v (I) dŵ (t)f(ŵ (t)) lim n 1 n + i=0 [Ŵ (t i+1) Ŵ (t i)]f(ŵ (t i)) (2.5) df[ŵ ] = f W dŵ + 1 2 f dt (2.6) 2 W 2 Stratonovich v (S) dŵ (t)f(ŵ (t)) lim n 1 n + i=0 [Ŵ (t i+1) Ŵ (t i)]f(ŵ (t i) + Ŵ (t i+1) 2 Stratonovich ) (2.7) v v (S) dŵ (t)f(ŵ (t)) = (I) dŵ (t)f(ŵ (t)) + 1 v dt df (Ŵ (t)) 2 dw

2.1 15 1 Gau (1) < ˆξ(t) > (2) < ˆξ(t) 2 > (2.8) p(ξ(t i )) = 1 ξ2 e 2σ 2 dt (2.9) 2πσ2 dt Gau δ(0) 1 dt < ˆξ(t )ˆξ(t ) > δ(t t ) 2 Wiener (3) Mean Square (1) < dŵ >= 0 (2) < dŵ 2 >= dt (3)dŴ 2 = dt (2.10) 3 (1) (1) (I) v dŵ (t )Ŵ (t ) (2) (I) v dŵ (t )[Ŵ (t )] 2 v (3) (I) dŵ (t )[Ŵ (t )] n d[ŵ (t)]2 = [Ŵ (t) + dŵ (t)]2 Ŵ (t)2 = 2Ŵ (t)dŵ (t) + [dŵ (t)]2 = 2Ŵ (t)dŵ (t) + dt d[ŵ (t)]n = nŵ (t)n 1 dŵ n(n 1) (t) + Ŵ (t) n 2 dt 2 x n x n+1 dŵ (t)n (n 2) (2.3)

16 2 Gau 4 Stratonovich (1) (1) (S) v dŵ (t )Ŵ (t ) (2) (S) v dŵ (t )[Ŵ (t )] 2 v (3) (S) dŵ (t )[Ŵ (t )] n Stratonovich 5 ( Taylor ) df[ŵ ] = f W dŵ + 1 2 f dt (2.11) 2 W 2 6 ( (1)(2) 3 ) (1) d[ŵ 2 ] (2) d[ŵ n ] (3)d[eŴ ] (4)d[in Ŵ ] (5) d[log Ŵ ] 7 f(x) F (x) dxf(x) Stratonovich (S) v dŵ (t )f(ŵ (t )) = F (Ŵ (v)) F (Ŵ ()) (2.12) Stratonovich 8 Stratonovich (2) 4 7 9 Stratonovich (S) v v dŵ (t)f(ŵ (t)) = (I) dŵ (t)f(ŵ (t)) + 1 2 v dt df (Ŵ (t)) dw

2.1 17 10 (1) Stratonovich (1) (S) v (t) dŵ (t)e Ŵ (2) (S) v dŵ (t) log Ŵ (t) (3) (S) v dŵ (t) co Ŵ (t) 11 (2) Stratonovich (1) (I) v (t) dŵ (t)e Ŵ (2) (I) v dŵ (t) log Ŵ (t) (3) (I) v dŵ (t) co Ŵ (t) 12 (2) 11 (1) (3) ( 7) Stratonovich Stratoinovich 13 Stratonovich lim n + n i=0 [Ŵi+1 Ŵi]f(Ŵi+1 + Ŵi 2 ) = lim n + n i=0 [Ŵi+1 Ŵi] f(ŵi+1) + f(ŵi) 2 Stratonovich Stratonovich * 2 *2 Stratonovich ( )

18 2 Gau 2.2 d ˆX dt = f( ˆX) + g( ˆX)ˆξ (2.13) ˆξ Gau ˆX(t) = ˆX(0) + t 0 df( ˆX()) + t 0 dŵ ()g( ˆX()) (2.14) 3 v (I) dŵ (t)g( ˆX(t)) n 1 lim n + i=0 [Ŵ (t i+1) Ŵ (t i)]g( ˆX(t i )) (2.15) t t ˆX(t) = ˆX(0) + df( ˆX()) + (I) dŵ ()g( ˆX()) (2.16) 0 0 (I)d ˆX = f( ˆX)dt + g( ˆX)dŴ (2.17) Stratonovich Stratonovich v (S) dŵ (t)g( ˆX(t)) n 1 lim n + i=0 [Ŵ (t i+1) Ŵ (t i)]g( ˆX(t i ) + ˆX(t i+1 ) 2 ) (2.18)

2.2 19 Stratonovich Stratonovich ˆX(t) = ˆX(0) + t 0 df( ˆX()) + (S) t 0 dŵ ()g( ˆX()) (2.19) (S)d ˆX = f( ˆX)dt + g( ˆX)dŴ (2.20) Stratonovich (I)d ˆX = a( ˆX)dt + b( ˆX)dŴ (2.21) (I)df[ ˆX] = f x [a( ˆX)dt + b( ˆX)dŴ ] + b2 ( ˆX) 2 f dt (2.22) 2 x2 Stratonovich (S)d ˆX = α( ˆX)dt + β( ˆX)dŴ (2.23) (S)df[ ˆX] = f x [α( ˆX)dt + β( ˆX)dŴ ] (2.24) (1) (I)d ˆX = adt + bdŵ (2.25) (S)d ˆX = (a 1 2 b xb)dt + bdŵ (2.26) (2) (S)d ˆX = αdt + βdŵ (2.27) (I)d ˆX = (α + 1 2 β xβ)dt + βdŵ (2.28) Stratonovich Stratonovich Stratonovich

20 2 Gau 1 (I)d ˆX = a( ˆX)dt + b( ˆX)dŴ (2.29) 2 f(x) (I)df[ ˆX] = f x [a( ˆX)dt + b( ˆX)dŴ ] + b2 ( ˆX) 2 f dt (2.30) 2 x2 2 (1) (I)d ˆX = ˆXdt + dŵ (2.31) (1) d[ ˆX 2 ] (2) d[ ˆX n ] (3)d[e ˆX] (4)d[in ˆX] (5) d[log ˆX] 3 (2) (I)d ˆX = ˆXdt + ˆXdŴ (2.32) (1) d[ ˆX 2 ] (2) d[ ˆX n ] (3)d[e ˆX] (4)d[in ˆX] (5) d[log ˆX] 4 (3) ˆX(0) = x 0 (I)d ˆX = ˆXdt + σ ˆXdŴ (2.33) σ2 { (1+ ˆX(t) = x 0 e 2 )t+ŵ (t) Ŵ (0)} (2.34)

2.2 21 5 Stratonovich Stratonovich (S)d ˆX = α( ˆX)dt + β( ˆX)dŴ (2.35) 2 f(x) (S)df[ ˆX] = f x [α( ˆX)dt + β( ˆX)dŴ ] (2.36) 6 Stratonovich (1) Stratonovich (S)d ˆX = ˆXdt + dŵ (2.37) (1) d[ ˆX 2 ] (2) d[ ˆX n ] (3)d[e ˆX] (4)d[in ˆX] (5) d[log ˆX] 7 Stratonovich (2) Stratonovich (S)d ˆX = ˆXdt + ˆXdŴ (2.38) (1) d[ ˆX 2 ] (2) d[ ˆX n ] (3)d[e ˆX] (4)d[in ˆX] (5) d[log ˆX] 8 ˆX = ˆX = t o t 0 t ad + (I) bdŵ (2.39) 0 (a 1 t 2 b xb)dt + (S) bdŵ (2.40) 0 (I)d ˆX = adt + bdŵ (S)d ˆX = (a 1 2 b xb)dt + bdŵ (2.41)

22 2 Gau 9 (1) ˆX(0) = x 0 (1) (S)d ˆX = γ ˆXdt + dŵ (2.42) (2) (S)d ˆX = ( γdt + σdŵ ) ˆX (2.43) (3) (S)d ˆX = ˆX 2 dŵ (2.44) 10 (2) ˆX(0) = x 0 (1) (I)d ˆX = γ ˆXdt + dŵ (2.45) (2) (I)d ˆX = ( γdt + σdŵ ) ˆX (2.46) (3) (I)d ˆX = ˆX 3 dt + ˆX 2 dŵ (2.47)

2.3 23 2.3 Fokker-Planck 1 Fokker-Planck (1) 2 Fokker-Planck (2)

25 3 Gau (Le vy ) 3.1 3.2 3.3 3.4 Fokker-Planck

II

29 4 4.1 4.2 Fokker-Planck

31 5 5.1 5.2