II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

Similar documents
1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

08-Note2-web

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

i


6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

pdf

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

日本内科学会雑誌第102巻第4号

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


( ) ( )

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

Gmech08.dvi

v_-3_+2_1.eps

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

Note.tex 2008/09/19( )

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

2011de.dvi


1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Gmech08.dvi

1

85 4

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a


x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

untitled

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

プログラム

keisoku01.dvi

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

v er.1/ c /(21)

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

gr09.dvi

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx


S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

Korteweg-de Vries

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

I 1

Chap9.dvi

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

x ( ) x dx = ax

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

TOP URL 1

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

振動と波動

Gmech08.dvi

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

lecture

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

Transcription:

II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ = α ± iβ α, β ( x(t) = e αt cos βt α ) β sin βt x + ax + bx = 0 x(0) = 1, x (0) = 0 1

1.5* 5 23 Matlab (1) x t 2 (2) x = 2tx 1 + t 2 (3) x = (1 t)x + t 2 1.6 5 23 (1) x = t + x (2) x + 1 (3) x = t x (4) x 2 t 2 (a) (b) (c) (d) 1.7* 5 23 (1) x = 2(x 4), (0, 1); (0, 4); (0, 5) (2) x (t + x), (0, 1); (0, 2); (0, 1 4 ); ( 1, 1) (3) x 2, (0, 1); (0, 2); (0, 1); (0, 0) (4) x = (x 1)(t + 2), (0, 1); (0, 1); (0, 3); (1, 1) (5) x = tx t 2 +4, (0, 2); (0, 6); ( 2 3, 4) (6) x (2 x), (0, 1 2 ); (0, 1); (0, 2) (7) x = (sin t)(sin x), (0, 2) 1.8 Matlab (1) x = cos(2t x), x(0) = 2 2

1 (2) x 2 ln x, x(0) = 1 3 2.1* 5 23 x 1 = x 2 2.2* 5 23 txx = t 2 + x 2 x(1) = 0 2.3* 5 23 3 (t 2 t)x + (1 2t)x + t 2 = 0 2.4* 5 23 [1] p.7 (1) x = cot t cot x (2) (1 + t)x + (1 x)tx = 0 2.5* 5 23 [1] p.9 (1) x = 2tx t 2 + x 2 (2) t tan x t x + tx = 0 2.6* 5 23 [1] p.10 (1) x = x t + t3 (2) x + x cos t = sin t cos t 2.7* 5 23 [1] p.11 (1) x + x = t sin t, x(0) = 1 3

(2) tx + x = t 3, x(1) = a R 2.8 5 23 [1] p.12 (1) 4tx + 2x = tx 5 (2) 3x x tan t 2 cos t 2.9 5 23 [1] p.13 (1) x 2 x 2 (2) x = x 2 + x t + t2 2.10 R L V I + V switch I R L 2.11 25 NaCl 300 1 0.3 15 /1 12 /1 (1) t NaCl kg/min (2) t l (3) t NaCl kg/min (4) (5) 25 2.12* 5 23 4

(1) tx + x = e t (2) tx + 3x = sin t t 2 (3) x + (tan t)x = cos 2 t, t ( π 2, π 2 ) (4) tx + 2x = 1 1 t (5) (1 + t)x + x = t, t > 0 (6) tx x = 2t log t, t > 0 (7) (sin t)x + (cos t)x = tan t, t (0, π 2 ) 2.13* 5 23 (1) x + 2x = 3, x(0) = 1 (2) tx + 2x = t 3, x(2) = 1 (3) tx + x = sin t, x( π 2 ) = 1 (4) (t + 1)x 2(t 2 + t)x = et t + 1, x(0) = 5 (5) x + tx = t, x(0) = 6 3.1* 5 23 (1) x 3 + 3tx 2 x = 0 (2) x 2 + 3txx = 0 (3) x 4 + 3tx 3 x = 0 3.2* 5 23 [1] p.15 (1) (x sin t t) + (x 2 cos t)x = 0 (2) (1 + t t 2 + x 2 ) + ( 1 + x t 2 + x 2 )x = 0 3.3* 5 23 (1) (sin x sin t) + t cos x x = 0 (2) xe t + (e t cos x)x = 0 5

3.4* 5 23 (1) (1 + tx) + t 2 x = 0 (2) t + (x t)x = 0 (3) (t 2 + 2t x 2 ) 2xx = 0 (4) (t 2 x 2 x) tx = 0 3.5* 5 23 [1] p.16,18 (1) (t + t 2 + x 2 )dt + tx dx = 0 (2) (sin t t cos t 3t 2 (x t) 2 )dt + 3t 2 (x t) 2 dx = 0 (3) x dt + 2t(1 + tx 3 )dx = 0 (4) (x 2 + tx)dt t 2 dx = 0 3.6* 5 23 t 0 = 0 (1) x = t 2 x (2) (t 3)x + 2x = 0 3.7 t 2 x + tx + t 2 x = 0, x(0) = 1, x (0) = 0 0 (1) (2) (1) [ 5, 5] [1] 28-31 A1*, A2*, A3, A4, A5, A6, A7, A8, A10, A11, B1*, B2, B3, B4*, B5, B6, B7, B8, B10, B11, B12, B13, B14 5.1* 6 6 [1] p.63 (1) x + 3x + 2x = 0 6

(2) x + 8x + 12x = 0 (3) x 7x + 12x = 0 5.2* 6 6 [1] p.64 (1) x + x + x = 0 (2) x 3x + 2x 6x = 0 (3) x x = 0 5.3* 6 6 [1] p.68-69 (1) x + x + x = 5t 2 t (2) x 2x + x = 3t 2 + 1 (3) 2x + x x = t 3 (4) x x + x = e 2t (5) x + 2x + x = te t (6) x x = t sin t 5.4* 6 6 (1) f 1 (x), f 2 (x) 2, f 3 (x) = 3x 4x 2 (2) f 1 (x) = 0, f 2 (x), f 3 (x) = e x (3) f 1 (x) = 3, f 2 (x) = cos 2 x, f 3 (x) = sin 2 x (4) f 1 (x) = 1 + x, f 2 (x), f 3 (x) 2 5.5 6 6 (1) t 2 x 7tx + 16x = 0, x 1 (t) = t 4 (2) 4t 2 x + x = 0, x 1 (t) = t ln t (3) (1 2t t 2 )x + 2(1 + t)x 2x = 0, x 1 (t) = t + 1 5.6* 6 6 7

(1) x + 2x + x = 0 (2) x + 3x 4x = 0 (3) x 2x 3x = 4t 5 + 6te 2t (4) x + x = 4t + 10 sin t (5) x + x = 1 t 2 e t (6) x 2x + x = et 1+t 2 5.7 70 cm 0.5 kg 168 cm 40 cm x(t) / 5.8 F sin γt x + ω 2 x = F sin γt, x(0) = 0, x (0) = 0 F γ ω γ ω t 5.9 F γ ω x + ω 2 x = F cos γt, x(0) = 0, x (0) = 0 γ ω ε = 1 2 (γ ω) x(t) = F sin εt sin γt 2εγ Matlab 5.10 (1) x + x + x + x 3 = 0, x(0) = 3, x (0) = 4 (2) x + x + x + x 3 = 0, x(0) = 0, x (0) = 8 (3) x + x + x x 3 = 0, x(0) = 0, x (0) = 1.5 (4) x + x + x x 3 = 0, x(0) = 1, x (0) = 1 8

5.11 Duffing x + x + k 1 x 3 = cos 3 2 t, x(0) = 0, x (0) = 0 k 1 < 0 5.12 d 2 θ dt 2 + 2λdθ dt + ω2 sin θ = 0 λ, ω λ 2 ω 2 5.13 h 0 v 0 h 0 6.1* 6 6 A e ta 5 3 (1) A = 1 1 1 4 2 (2) A = 3 4 0 3 1 3 5 4 2 (3) A = 12 9 4 12 8 3 5 4 (4) A = 2 1 1 1 0 (5) A = 2 3 2 0 2 1 6.2* 6 6 [1] p.94 A e ta (1) x 1 2 1 0 (2) x 1 1 1 1 9

(3) x 0 2 1 2 (4) x 1 0 2 1 0 2 4 (5) x = 2 3 2 x 4 2 0 6.3* 6 6 A x 0 e ta 4 12 5 (1) A =, x 0 = 3 8 1 9 7 3 1 (2) A = 16 12 5, x 0 = 1 8 5 2 1 x = Ax, x(0) 0 7.1* 6 6 6.1-6.3 8.1* 7 11 [1] p.133 (1) x 1 1 3 2 (2) x 1 4 1 1 (3) x 3 1 = x 4 3 (4) x 1 1 1 3 (5) x 1 1 = x 2 1 8.2 dθ dt dv dt = v = sin θ 10

(θ(t), v(t)) 1 2 v2 cos θ 8.3 2 Lotka-Volterra x = (a + by αx)x y = (c + dx βy)y (1) α = β = 0 a, b, c, d (2) α, β > 0 [1] 11