untitled

Similar documents

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

untitled


6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

橡博論表紙.PDF

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

85 4

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

重力方向に基づくコントローラの向き決定方法

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

.I.v e pmd

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

Annual-report-vol-61.pdf

TOP URL 1

パーキンソン病治療ガイドライン2002

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

TOP URL 1

JFE.dvi

i 18 2H 2 + O 2 2H 2 + ( ) 3K

untitled

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

研修コーナー


28 Horizontal angle correction using straight line detection in an equirectangular image

TOP URL 1

抄録/抄録1    (1)V

untitled

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

ssp2_fixed.dvi

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u

2012専門分科会_new_4.pptx

all.dvi

数学の基礎訓練I



2000年度『数学展望 I』講義録

211 ‚æ2fiúŒÚ

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

Evolutes and involutes of fronts Masatomo Takahashi Muroran Institute of Technology

70 : 20 : A B (20 ) (30 ) 50 1

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

高等学校学習指導要領

高等学校学習指導要領

I

薄膜結晶成長の基礎2.dvi


Gmech08.dvi

SO(2)


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

Mott散乱によるParity対称性の破れを検証

『共形場理論』

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

第1章 微分方程式と近似解法

all.dvi

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

II 2 II

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *


JSP58-program


r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

数値計算:有限要素法

量子力学 問題

第90回日本感染症学会学術講演会抄録(I)

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

sec13.dvi

Microsoft Word - 01マニュアル・入稿原稿p1-112.doc

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

( ) ( )

Z: Q: R: C: sin 6 5 ζ a, b

4‐E ) キュリー温度を利用した消磁:熱消磁

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

基礎数学I

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R



2 3 2

300 10


untitled

Transcription:

Stacking sequence optimization of composite wing using fractal branch and bound method Orbiting Plane : HOPE-X (JAXA)

Fractal Branch and Bound Method (FBBM) Fractal structure of design space

5 y V a 9º º b Coordinates of a delta wing and supersonic flow a/b=. h/a=. - (T8/6) E L = GPa E T =.8 GPa G LT =5.9 Gpa ν L =. 6

7 ( ) ),, ( 66 t y p t w h y w D y w D D w D L + = + + + ρ t w w y p + = µ λ ), ( [ ] [ ] [ ] = + M K K A µ λ Piston Theory = M q λ = M M V λ µ { } t i e w ω = 8 ( ) ), ( 66 y p t w h y w D y w D D w D L + = + + + ρ = 5 6 6 66 U U U U U U h D D D D D D Sym. k (number of laminate) N h N = Z = Z Z k- Z k Sym. k (number of laminate) N h N = Z = Z Z k- Z k ( ) = = = N k k k k k a k a k θ θ θ θ sin sin cos cos = N k N a n Sectional view of a laminate

Frequency/o (/rad) 5 5 5 5 55 6 65 7 c -5 Flutter Parameter Coalescence of st-nd eigenvalues of a delta wing a λ c = D λ c D (, )=(,) D 9 : λ c (, ) 5

D D Candidate points and selected points c [ K ] + λ[ K ] µ [ M ] = A (, ) V: Candidate points and selected points 6

λ c (, ) y = β + + β + β + β + β β5 E adj 7

E adj E n n = n ( k ) ( y y ) ˆ i i adj S yy y : yˆ : S : y yy k : n : E adj.95 E adj 5 = = N ( a k a k ) k = a n cosθ k cosθ k sin θ k sin θ k N k = N θ cosθ cosθ = o ± 5 9 o o :,5,9, = fractal structure of a design space 6 8

[9// /] [5// /] [// /] s The case of the outermost ply is 9º 5º layer Fractal Structure of Design Space 7 [5/9//]s The case of 5º-ply in the outermost ply and 9º-ply in the second ply 8 9

N N Fractal branch structure of stacking-sequence 9 + β + β + β + β β5 f = β +

a/b= h/a=. - (T8/6) E L = GPa E T =.8 GPa G LT =5.9 Gpa ν L =. y V a 9º º b Coordinates of a delta wing and supersonic flow Optimization flow D Candidate points and selected points

D Optimization flow [ K ] + λ[ K ] µ [ M ] = A Candidate points and selected points c Optimization flow FEM y 66 65 Finite element assemblages for delta wing

λ c (, ) Optimization flow f + β + β + β + β β5 = β + λ = c 68.5 +. 9.5 7.5.85 5 Optimization flow.5 5.5 5 6 6 7 7 -.5 8 -.5 8 - - -.5.5 Contour plot of response surface a/b=, = - - -.5.5 Contour plot of flutter limit a/b=, = R adj =.99 6

(FBBM) [(5/-5) ] s (, )=(., -. ) c =79.8 Optimization flow [5/-5/5/9/-5/9/5/-5 ] s (, )=(-.68, -.656 ) c =8.89 6. 7.5 -.5-5 6 7 8 - -.5.5 Contour plot of flutter limit a/b=, = 8

Optimization flow..5 -. -.5. -.5.5. D opt -. Design space for zoomed response surface 9 Optimization flow -. 5 -.5.. -.5.5.5 Candidates Selected -.5 -.75 [ K ] + λ[ K ] µ [ M ] = A -. Candidate points and selected points for zoomed RS c 8 5

c λ = 69.78 +.6 7.9 5. + 7. 8.5 7 7 Optimization flow -.5 75 -.5 75 8 8 -.5 -.5 -.75 -.75 - -.5 -.5.5.5 - -.5 -.5.5.5 Contour plot of zoomed RS a/b=, = Contour plot of flutter limit (-.5.5,.) a/b=, = R adj =.99 (FBBM) [5/-5/9/(5/-5) /9] s (, )=(-.8, -.6 ) c =8.8 Optimization flow [5/-5/5/9/-5/9/5/-5 ] s (, )=(-.68, -.656 ) c =8.89.8 6

y V y 9º b Coordinates of a delta wing and supersonic flow º a a/b= h/a=. - (T8/6) E L = GPa E T =.8 GPa G LT =5.9 Gpa ν L =. c = 9 c c 7

5, 5 9 =,,,,, 5 : =5, 5, 6, 7, 8, 9 c 5 D FEM 6 8

6.5% =.5 c tmp c n i (i=~6) 7 Optimal flutter limit parameter : c 8 6 8 6 6 8 Base fiber angle : Response surface c opt Response surface of optimal flutter limit parameter c 5, 5 9 8 9

o = 6 [9//9/ /9 ] s, [9/ /9 / /9] s (, )=(-.7,. ) c opt =8.99 5.5% =.5 c opt ( o ) c opt ( o -5 ) c opt ( o ) c opt ( o +5 ) c opt ( o )=85.85 c opt ( o -5 )=.8, c opt ( o +5 )=69.96 9 (, )=(.,.) c =69.95 (, )=(-.8, -.6) c =8.8. (, )=(.,.) c =69.95 () (, )=(-.5,.) c =8.99.7.

SST y.76 a/b=/.76 V 9º º. h/a=. - Coordinates of a SST wing and supersonic flow (T8/6) E L = GPa E T =.8 GPa G LT =5.9 Gpa ν L =. SST D FEM )

SST.5.5 5 5 -.5 5 - - -.5.5 -.5 5 - - -.5.5 Contour plot of response surface h/a=. Contour plot of flutter limit h/a=. R adj =.98 λ c =.7 +. 5..87.97 + 8.78 SST (FBBM) [(5/-5) ] s (, )=(., -. ) c =. 9 c.79 -.96875 7.99 -.79 -.96875 8.6.565 -.96875 7.7 c(fbbm) -.565. -.96875 -. 8.65.6

SST y.76 a/b=/.76 V 9º º. h/a=. - Coordinates of a SST wing and supersonic flow (T8/6) E L = GPa E T =.8 GPa G LT =5.9 Gpa ν L =. 5 SST D FEM 6

SST.5 5 5 8.5 5 5 8 6 6 -.5 -.5 - - -.5.5 - - -.5.5 Contour plot of response surface h/a=. Contour plot of flutter limit h/a=. R adj =.987 λ = c 6.5.85.57 +..66.8 7 SST (FBBM) [9 8 ] s (, )=(-.,. ) c =5.9 7 c.9969. 5..9766. 5.955.96875. 5.895 c(fbbm).988..96875 -. 5.6 5.669 8

.5 h/a=. h/a=. h/a=.. 5 -.5 - h/a=. - -.5.5 h/a=. 9 9 5 5