Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Similar documents

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Korteweg-de Vries

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f

QMI_09.dvi

QMI_10.dvi

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

K E N Z OU

( ) (Appendix) *

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Note.tex 2008/09/19( )

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

TOP URL 1

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (


(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)


Anderson ( ) Anderson / 14

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

QMI13a.dvi

meiji_resume_1.PDF

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) Loewner SLE 13 February

gr09.dvi

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


Fr

A

xia2.dvi

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


201711grade1ouyou.pdf

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

i 18 2H 2 + O 2 2H 2 + ( ) 3K


: , 2.0, 3.0, 2.0, (%) ( 2.

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

本文/目次(裏白)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo

untitled

30

mf.dvi

PDF

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

phs.dvi

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

untitled

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

v er.1/ c /(21)

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

Chap11.dvi

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

II Brown Brown

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2

b3e2003.dvi

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n


all.dvi


163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

2011de.dvi

untitled


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


pdf

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

Transcription:

003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp URL: http://www.freeml.com/info/econophysics@freeml.com 003 7 15 16 003 1

Black-Scholes Nelson Nelson Fokker-Planck Schrödinger Schrödinger [7][8] t S(t) µ σ W (t) dw (t)dw (s) = δ(t s)dt (1) Wiener µ σ ds(t) = µs(t)dt + σs(t)dw (t) () Black-Scholes µ σ S(t) t µ S(t) t ds(t) = µ(s(t), t)s(t)dt + σs(t)dw (t) (3) ds(t) df(t) f(t + dt) f(t) (4) dx(t) ds(t) S(t) (5) (3) dx(t) = µ(x(t), t)dt + σdw (t) (6) 3 Nelson Nelson [][3][4] Nelson x(t) d x(t) = µ( x(t), t)dt + σd W (t) (7)

(6) (6) Nelson Newton Newton Nelson x(t) µ(x(t), t) x(t) t x(t) W (t) Nelson f(t) f(t + t) f(t) Df(t) lim t 0 t f(s) (s t) Wiener W (t) t t 0 f(t) D [7] D x(t) W (t) x(t) (8) Dx(t) = µ(x(t), t) (9) D DDx(t) Newton Nelson f(t) f(t t) D f(t) lim t 0 t f(s) (s t) (6) (10) x(t dt) = x(t) + µ (x(t), t)( dt) + σ(w (t dt) W (t)) (11) µ (x(t), t) µ(x(t), t) x(t) = x(t dt) + µ (x(t), t)dt + σ(w (t) W (t dt)) (1) (4) d f(t) f(t) f(t dt) (13) 3

(1) d x(t) = µ (x(t), t)dt + σd W (t) (14) d W (t) W (t) dw (t) x(t) D D x(t) = µ (x(t), t) (15) D D Nelson x(t) α(t) α(t) (DD + D D) x(t) (16) Nelson x(t) Newton m (DD + D D) V (x(t)) x(t) = (t) (17) V (x(t)) m Newton Nelson (9) (15) µ µ µ µ µ µ µ µ Fokker-Planck Markov (17) (9) (15) m (Dµ + D µ) (18) Dµ Dµ µ µ D Dµ µ Dµ (x(t + t), t + t) µ (x(t), t) (x(t), t) lim t 0 t f(s) (s t) x(t + t) = x(t) + x(t) µ (x(t + t), t + t) t Taylor µ (x(t)+ x(t), t+ t) = µ (x(t), t)+ µ µ t+ x(t)+ 1 µ x(t) +o( t) (0) (19) W (t) (1) ( x(t)) σ t Dµ (x(t), t) = µ + µ µ + σ 4 (19) µ (1)

D µ D µ(x(t), t) = µ µ + µ σ µ () (17) m { (µ + µ ) + µ µ µ + µ σ (µ µ } ) (3) µ µ (17) m u µ µ v µ + µ { v + v v u u σ } u V (x(t)) = (4) (5) (6) Fokker-Planck u v µ µ Nelson u v 4 Fokker-Planck Nelson u v u v u v Fokker- Planck ( ) 0 t 0 x 0 t 1 x 1 ρ(x 1, t 1 x 0, t 0 ) t 1 ρ(x, t x 0, t 0 )dx = 1 ; (7) Markov ρ(x, t x 0, t 0 ) = ρ(x, t x 1, t 1 )ρ(x 1, t 1 x 0, t 0 )dx 1 (t 0 < t 1 < t ) (8) ; Chapman-Kolmogorov 5

Fokker- Planck ρ(x, t) = ρ(x, t x 0, t 0 )ρ(x 0, t 0 )dx 0 (9) D x(t) f(x(t)) t f(x(t + t)) f(x(t + t)) t = f(y)ρ(y, t + t x, t)dy (30) f(x(t)) t = f(y)ρ(y, t x, t)dy (31) f(x(t)) ρ Df(x(t)) = lim t 0 f(y) ρ(y, t + t x, t) ρ(y, t x, t) dy (3) t ρ Markov ρ(x, t x 0, t 0 ) x Chapman-Kolmogorov (8) lim f(y) (ρ(y, t + t x, t) ρ(y, t x, t))ρ(x, t x 0, t 0 ) dxdy t 0 t = lim f(y) ρ(y, t + t x 0, t 0 ) ρ(y, t x 0, t 0 ) dy t 0 t ρ(y, t + t x 0, t 0 ) ρ(y, t x 0, t 0 ) = f(y) lim dy t 0 t = f(y) ρ(y, t x 0, t 0 ) dy = f(x) ρ(x, t x 0, t 0 ) dx (33) Df(x(t))ρ(x, t x 0, t 0 )dx (34) Df(x(t)) (1) t { µ f(x) + σ } f(x) ρ(x, t x 0, t 0 )dx (35) { f(x) µ + σ } ρ(x, t x 0, t 0 )dx (36) 6

f(x) ρ(x, t x 0, t 0 ) = { µ + σ } ρ(x, t x 0, t 0 ) (37) Fokker-Planck Kolmogorov ρ ρ(x, t x 0, t 0 ) = { µ σ } ρ(x, t x 0, t 0 ) (38) Kolmogorov (37) (38) µ,µ u,v ( (µ µ )ρ + σ ρ ) = 0 (39) t ρ x 0 0 u, v (4) (5) u = σ 1 ρ ρ = σ (37) (38) ln ρ ρ (40) ρ + (vρ) = 0 (41) (40) (41) ρ u,v (40) t ρ (41) (40) u u = v σ (uv) Fokker-Planck u v (4) 5 Schrödinger u, v (6) (4) Schrödinger Fokker-Planck u + κ v + (uv) = 0 (43) Nelson v u κ 1 (u v ) + 1 V m = 0 (44) 7

κ = σ (45) (43) + i (44) = 0 ; i (46) χ u + iv (47) χ i χ + χ κ + 1 χ 1 V m = 0 (48) χ Burgers Cole-Hopf χ = α ln φ (49) α φ { (α ln φ) i + κ (α ln φ) + 1 ln φ) ( (α ) V } = 0 (50) m (ln φ) (ln φ) (ln φ) = φ φ = φ φ = φ φ (φ φ ) { iα φ φ + καφ φ κα(φ φ ) + α (φ φ ) V } m = 0 (51) α = κ { κi φ φ + κ φ φ V } = 0 (5) m t κi φ φ + κ φ φ V + η(t) = 0 (53) m 8

η(t) Schrödinger η(t) κi φ ψ + η(t) = κi φ ψ (54) ψ ψ φe i t κ η(τ)dτ (55) ψ (53) κi ψ + κ ψ V m ψ = 0 (56) (45) κ σ iσ ψ + σ4 ψ V m ψ = 0 (57) σ = h m (58) Schrödinger i h ψ = h m ψ + V ψ (59) h π Schrödinger Schrödinger ψ 6 (57) (59) Schrödinger (57) Schrödinger ψ ρ(x, t) Fokker- Planck ψ(x, t) Schrödinger (55) ψ = φ (60) (49) x φ = e 1 α χdx φ φ φ = φ φ = e 1 σ (χ+χ )dx (61) 9

(47) (40) (60) χ + χ = u (6) ψ(x, t) = A(t)ρ(x, t) (63) A(t) t ρ(x, t) ψ(x, t) x t V (x) A(t) t ψ(x, t) = ρ(x, t) (64) ψ(x, t) (57) Schrödinger 7 Nelson Schrödinger µ µ Schrödinger Schrödinger 10

[9] Schrödinger Korteweg-de Vries (KdV ) ( ) 8 Ornstein-Uhlenbeck [6] 9 (58) σ = h m 11

10 Levy Schrödinger Schrödinger Schrödinger ρ(x(t)) 1

[1] F. Black and M. Scholes, Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81 (1973), 637-654. [] E. Nelson, Derivation of the Schrödinger Equation from Newtonian Mechanics, Phys. Rev. 150(1966), 1079-1085. [3] E. Nelson, Dynamical Theories of Brownian Motion (Princeton University Press, Princeton, 1967). [4] E. Nelson, Quantum Fluctuations (Princeton University Press, Princeton, 1985). [5] G. Parisi and Y.-S. Wu, Sci. Sin. 4 (1981) 483. [6] G. E. Uhlenbeck and L. S. Ornstein, On the theory of Brownian motion, Phys. Rev. 36 (1930), 83-841. [7] p.161 [8] p.03 [9] G.L., Jr. [ ] 13