= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

Similar documents
body.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

³ÎΨÏÀ

mugensho.dvi

v er.1/ c /(21)

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Chap11.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

i

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

2011de.dvi

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


II 2 II

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

Part () () Γ Part ,

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


Untitled

i 18 2H 2 + O 2 2H 2 + ( ) 3K

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

all.dvi

meiji_resume_1.PDF

untitled

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

DVIOUT

2 2 L 5 2. L L L L k.....

. p.1/14

29


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

TOP URL 1

DE-resume

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

notekiso1_09.dvi



B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

all.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1


.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

Microsoft Word - 表紙.docx

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

Microsoft Word - 信号処理3.doc

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

Gmech08.dvi

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2


Acrobat Distiller, Job 128

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Transcription:

+ + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π....................................................................... 3.3 Γ- B-................................... 6 9............................... 9................... 3 3 7 3.............................. 7 3. ( ).................. 9 3.3........................... [ ] [ ], [ ] 7 http://www.mth.kyoto-u.c.jp/ obuo/tch/biseki/7/otes.html [ ] 7 9 3. [URL] http://www.mth.kyoto-u.c.jp/ e obuo

... D f, f,,,... D D (uiform orm) 3 () lim f f D. f D sup f (.) D (f ) f D coerge uiformly () x D lim f (x) f(x) (f ) f (D ) coerge poitwise x D f (x) f(x) f f D (), () (.) D R d K D lim f f K (f ) f (D ) coerge loclly uiformly coerge uiformly i wider sese x D K {x} K D f f K f f D. (.3) {.. x [, ],f (x) x, f(x) def., x [, ) (i) f, x. [, ] f (ii) < δ < f [, δ] f f f f.. f.. D R d, f C(D),,,... f : D C f C(D). 3 sup D f (.)

x, x D, x x f(x ) f(x) m, f(x ) f(x) f(x ) f m (x ) + f }{{} m (x ) f m (x) + f }{{} m (x) f(x). }{{} () () (3) K def. {x } {x} f f ( ) ( ) ε >, m, f f m K < ε/3, ( ) m () + (3) < ε/3. ( ) m f m C(D),, () < ε/3. () + () + (3) < ε...... ( M- ) D f : D C, f D < s f D lim s f D. x D f (x) f D. f D f D. x D () f (x) f D f D. () s f D () s f D f + D + f D. ( )... Arcsi y ( )!!y + ()!!(+) y [, ] 3

M- (..) (..4) g(x) ( ) x, x [, ] x g(x) M- g() (..3) p /, q ( ) ( g() ).. p [, ), q C ( ) () p p +. (b) Q q +... + q (c) lim p. (c) Q (),(b) (c) (c) s s p m q m m s s m p m+ sup Q j Q. (.4) j m (c) Q C (c) Q lim Q. (),(b) m, Q C q j (Q j Q) (Q j Q) s s m jm+ jm+ p j q j jm+ p j (Q j Q) } {{ } () jm p j+ (Q j Q) (p j p j+ ) (Q j Q) + p (Q Q) p }{{} m+ (Q m Q). () s (),() ( ) () : jm+ (p j p j+ ) (Q j Q) sup Q j Q j m+ jm+ (p j p j+ ) p m+ sup Q j Q ( ). j m+ 4

() () : (c) () p sup Q j Q,. j (c) Q lim Q () p Q Q,. s s s m () + () + p m+ Q m Q p m+ sup j m+ Q j Q + () + p m+ Q m Q p m+ sup Q j Q + (). j m lim () (.4)..3 ( 4 ) D p : D [, ), q : D C, ( ) () x D, p (x) p + (x). (b) Q q +... + q sup Q D <. (c) lim p D. (c) p D < Q D (),(b) (c) (c) s p m q m m D s s(x) s m (x) p m+ (x) sup Q j Q (x) x D. (.5) j m (c) Q : D C (c) Q(x) lim Q (x). x D.. s (.5) (.5) s s m D p m+ D sup Q j Q D. j m (c) (c) lim m s s m D. 4 5

..4 ε, D ε {z C ; z, + z > ε} ε > ( ) z g(z) D ε..3 D D ε, p /, q (z) ( ) z Q (z) z ( z) m z ( z) + z m Q (z) + z ε..3 (),(b),(c)..5 ( 5 ) ( ) s (x) m x m, m x [, ] s(x) [, ] D [, ], q (x), p (x) x..3 (), (b), (c) s(x)...3 Γ- B- Γ- B-.3. u > Γ(u) x u e x dx (.6) u Γ(u) ((, ) (, )) Γ- Γ(u + ) uγ(u), (.7) Γ(u + ) (u + )(u + ) (u + )uγ(u), (.8) Γ( + )!. (.9) (.6) f(x) x u e x (x > ) e x!x () f(x)!x u, () f () > u f f (.7): Γ(u + ) 5 iels Herik Abel (8 89) x u e x dx [ x u e x ] +u x u e x dx. }{{} }{{} Γ(u) 6

(.8): (.7) (.9): Γ() (.8) e x dx..3. u, (, ) Γ(u) u y u e y dy (.) u ( log s ) u s ds, (.) u r u e r dr (.).3. u, > x u ( x) dx π/ cos u θ si θ dθ (.3) B(u, ) B- B(u, ) B(u, ) B(, u), (.4) B(, u) B(u, ) /u, (.5) B(, ) π. (.6) (.3) f(x) x u ( x), M u (/) u x (, /] f(x) M x u x [/, ) f(x) M u ( x). / f, / f f x cos θ (.4): y x (.5): B(, u) (.4) B(u, ) x u dx /u. (.6): (.3) u /.3. t, u, > (i) B(u, ) u B(u, ). (i) y dy. (ii) (+y) u+ x u dx (+x t ).3.3 u, > xu ( x t ) dx t B( u t, ). (iii) B(u, u) t B( u t, u t ), (t > u). B(u +, ) u B(u, + ), B(u, + ) B(u +, ), (.7) u u B(u +, ) B(u, ), B(u, + ) B(u, ). (.8) u + u + 7

k, l B(k + u, l + ) (k + u) k(l + ) l (k + l + u + ) k+l B(u, ), (.9) k B(k +, l + ) ( ) k k+ }{{} k x k ( x) l dx k!l! (k + l + )! (.) (.).3.4 < < b <, u, > (x ) u (b x) dx (b ) u+ B(u, ) (.) (x )m (b x) dx (b )m++ m!! (m++)! Γ B.3.3 u, > 3.3.3.3.4 Γ( ) π. > Γ( ) π. (m, ) B(u, ) Γ(u)Γ() Γ(u + ). (.) e r dr π/. π (.6) B(, ) (.) Γ( )Γ( ) Γ( Γ() ) e r dr (.) Γ( ) π/..3.5 m, ( ) { + ( )!! π,, Γ / ( )!!,. ( )/ ( m + B, + ) π/ cos m θ si θ dθ { π (m )!!( )!! (m+)!!, {m, }, (m )!!( )!! (m+)!!, {m, }. 8

.. lim f lim f, ( ).. ( ) R d f R() ( { }) () (b) (c) () lim f f. (b) sup f < f f ( ) (c) lim f f. lim f f... () (c) () (b) (b) (c).. (b) (c) ( [, 5,.4.] ) sup f < f f ( ) f f ( ) (c) (, ], f (x) ( x ) (x, ) f f /. (c).... x [, ] Arct x ( ) x +. x + 3 + 5 7 +... π 4, ( ) x (, ) : f (y) ( ) y () x (, ) lim f (y) + y. () x (, ) x f ( ) x +. + 9

x (, ) () [ x, x] Arct x () x dy x + y lim ( ) x + + f ( ) y +. + y ± : f(y) f(y) [, ].. y ± f(y) [, ] f() y....5 f(y) [, ].. x [, ] ( ) x + (+) 6..3 π 6. f (x) π/ f si ( )!! x + ()!! +.3.5 π/ () lim f si ( )!! ()!! ( )!! ()!! ( + ). x + Arct y y dy x π/ si + ()!! + ( + )!! ( + )... lim f Arcsi ([, ] ). lim f si θ θ (θ [, π/] ). (..) π/ () lim f si (),() s def. (+) π/ π 8. θ dθ π 8. ( + ) } {{ } π /8 + (), s π }{{} s/4..3 735 k, k 4, 6, 8,, ([,, 35 ] k k B k π k, k,,.. (k)! [,, 337 ] B, B,.. 6 Eugée Chrles Ctl (84 894). 6.

.. (i) ( x log x)! x (, ] (ii) x x dx. (.9),(.)...3 (i) x (ii) x log x dx x x log x dx..4 θ (, π), r [, ] ϕ(r, θ) { e iθ r e iθ y log y x e x r cos(θ) dy (x [, ]). dx π 6 + i...3. r si(θ) log ( r cos θ + r ) + iϕ(r, θ), (.) Arct ( ) r cos θ si θ, θ π,, θ π. cos(θ) + i si(θ) r ( log si θ ) + i π θ. (.) r < θ (, π) r θ (, π) () (.) Log ( re iθ ) () (.) si(θ) π θ θ, π. θ θ π (..) r [, ) θ (, π) ρ e i(+)θ eiθ ρe cos θ ρ + i si θ, (ρ [, r] ). iθ ρ cos θ + ρ ρ [, r].. (.) r θ (, π)..4 r e iθ ( ) ( re iθ ) r [, ] (.) r [, ] r < (.) r e iθ cos(θ) + i si(θ) log ( cos θ) + iϕ(, θ). cos θ si θ, si θ cos θ si θ (.)

..4 θ ( π, π)\{} e( )iθ θ π 4 cos(( )θ) + i ( si(( )θ) log ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) + ( ) ( 3 + 5 5 + 7 t θ ) + i θ π θ 4. )... log(t π 8 ) log( + ), ) +... π. {..5 π π log( r cos θ + r, r <, )dθ log r, r >. (.) r < r > r <..6 (i) π log si π log si π log cos π log. (ii) Arcsi x x dx π ϕ t ϕ dϕ π ( π θ) t θ dθ π log. (iii) ( )!! π ()!!(+) log. (i) (.) θ [ε, π ε] (ε > ) ε..7 (.) f (θ) (i) f (θ) θ..8 f (θ) si (+ )ϕ si ϕ dϕ θ e iθ, g (θ) si(θ) (θ def. (, π)). (ii) sup f <. b e iθ (, b C, θ def. (, π)) f(θ), g(θ) lim f f, lim g g ( ) sup( f + g ) < 7 b fg π ( ) (.),..7 π 6..9 : (i) θ [, π] cos(θ) (θ π) 4 π (ii) π4 4 9. (i):..7 (.)..7 θ [ε, π ε] (ε > ) ε (ii): (..8) :..9 k (k 4, 6,...).. () (b) (b) (c) () (c) f f f f f f ( ). 7 799 Mrc-A. Prsel (755 836)

(b) (c) M sup { } f ε > J J < ε 4M+ ε lim f f J f f ε/. f f M, f f f f + M( J ) ε + M ε 4M + ε. J J ε > (c)...3.... (, b) R, J f t R loc () (t J) t J f t lim u u> sup t J u f t lim b <b sup t J f t t J f t (.3)....() M-..(b)..3.. ( ).. f t () g : [, ) (x, t) J f t (x) g(x), g (b) f t fg t, f, g t : C f, g t C () (t J), sup t J g t <, sup t J g t <. 3

(): t J f t (.3) lim b <b (b): f sup t J F (x) x lim f t f t f t g g. ( f, M sup g t + t J sup b x [,b) ( b). F (x) F (b). ) g t (F (x) F (b))g t(x) dx sup F (x) F () M <. x [,b) f t (x) (F (x) F (b)) g t (x) f t f t b lim b <b (F () F (b))g t () }{{} () (F (x) F (b))g t(x) dx } {{ } () () M F (b) F (), () sup F (x) F () M. x [,b) sup t J sup t J f t u f t (u ) (.3)....3 ( ) (, b) R, f R loc () ( { }) f t () lim f f, (b) f { } lim f f, lim f f. 4

..4 x ( + ) b Γ(b) e s s b dt xe s Γ(b) t ( log t xt ) b (i) >, b >, x. (ii), b >, x [, ). f (s) e (+)s s b g(s) def. e s s b xe s x f (s), f Γ(b) ( + ) b. g (s) def. e s s b (xe s ) + xe s dt x f (s) () lim g g ((, ) ) (b) g..3 g lim g x x f Γ(b) ( + ) b. () ε > [ε, ε ] s xe s e ε >. s e s s b M xe s g g (s) e s s b xe s + (b) xe s M xe s + Me ε(+),. g (s) e s s b xe s (i) (ii) s (, )..() (b)....4 ( ) +b x (, ]) ( ) 3+, ( ) 3+... y R y y + x b/ x / si xy e x dx. u b +u, (, b >, ( ) + ( ),..3.. < u < < b f f sup f f + { } u f + } {{ } () 5 f f + u u f f f f + sup } {{ } () { } u f } {{ } (3)

ε > (b) u, () ε/6, (3) ε/6 [u, ] () f f ([u, ] )... () ε/3. f f ε. 6

3 3. 3.. ( ) R d J R k, (x, t) f t (x) ( J C) () ( ) F (t) f t (x) dx t J (b) ( ) J R (x, t) J l t f t (x) (l,..., m) (x, t) J F C m (J) F (l) (t) t l f t (x)dx, l,..., m. 3.. t [, ) b (, ) tx si x e x dx π Arct t. f t (x) def. tx si x e x, tf t (x) e tx si x (x, t) [, b] [, ) 3.. F b (t) f t(x) dx t [, ) C F b (t) ( ) e tx si x dx m e (t i)x dx e tb (cos b t si b) + t. F b (t) t t e sb (cos b s si b) + s + C, (C ) ds + s r b (t) + C, }{{} π Arct t r b (t) t e sb (cos b s si b) + s. F b (t) f t e tx dx t (t ) cos b s si b C. +s r b (t) t e sb ds b (b ). lim F b (t) π Arct t. b 3.. q(θ) cos θ + b si θ (, b > ) (i) π π cos q π q π 4, π b si q π b q π 4b. (iii) π b q π q π 4 b. (ii) b ( + ) b. 7

( ) t 3.. t exp( x ) dx + exp( x ) dx π/ 3..3 q(θ) cos θ + b si θ (, b > ) π (i) log q π ( +. (ii) π b) log q π log + b. 3..4 (ii),(iii) 3.. exp( (+x )t ) +x dx π 4 (i) x (, ) cos x x x {. cos x (ii) e tx log + (/t) dx, t >, x t. { cos x π (iii) x e tx dx Arct t t log + (/t), t >, π t. cos x si x (iii) ( si x ) x e tx dx. 3.. (): t, t J, t t K {t } {t} f t (x) (x, t) K 3..3 f t (x) f t (x) (x ).. f t (x) dx F f t (x) dx. (b): A m, P m A m P m m m J K J J J ( ) f t+h (x) f t (x) lim t f t (x) (x ) h h h t f t (x) J. 3..3 ε > δ > t, t J, t t δ sup t f t (x) t f t (x) ε. x h δ f t+h (x) f t (x) t f t (x) h ( t f t+θh (x) t f t (x)) dθ t f t+θh (x) t f t (x) dθ ε. x ( ) h F (t + h) F (t) h f t+h (x) f t (x) dx. h 8

h ( ).. F (t) t f t (x)dx 3.. F C(J). P m 3..5 3..(b) 3.. 3..3 A i R d i (i, ), f C u (A A ) x, x A, x x lim sup y A f(x, y) f(x, y). ε > δ > x, x A, x x δ sup y A f(x, y) f(x, y) ε. ε > δ > (x, y), (x, y ) A A, (x, y) (x, y ) δ f(x, y) f(x, y ) ε. y y x, x A, y A, x x δ f(x, y) f(x, y) ε. y A 3. ( ) ( 3..) 3.. ( ) (, b) R, J R k, (x, t) f t (x) ( J C) F (t) f t (x)dx t J K J t K () ( ) F C(J). (b) ( ) J R l,..., m (x, t) J l t f t (x) J F C m (J) t J F (l) (t) l t f t (x)dx t J l t f t (x)dx, l,..., m. 9

3.. f : C((, )), f () F (t) e tx f(x) dx t [, ) lim lim F (t). t (b) F C ((, )), F (l) (t) ( x) l e tx f(x) dx. t F (t) (): g t (x) e tx, f t fg t..(b) f t t [, ) lim f t f, t lim t f t. (, ) K (, ) K [ε, /ε] ε > def. [ε, /ε] f t f ( e t/ε ) f (t ). f t e tε f (t )...3 (b): t l f t (x) ( x) l f t (x) (x, t) (, ) t l f t t (, ) 3.. () t J def. [ε, /ε] t J l t f t (x) (x) l e tx f(x) ε l e εx f. t J x (, )..() t l f t t J 3.. Γ C ((, )) q Γ (q) (t) x t (log x) q e x dx 3..3 π π e (x m) e (x m) +itx t imt dx e, m R, >, t R. m > : 3..3 8 3..3 m m e x e x +itx dx e x cos(tx) dx. > f t (x) e x cos(tx) f t (x), t f t (x) xe x si(tx) (x, t) R R f t (x) e x, t f t (x) x e x 8 m, 5 f,

F (t) def. f t, tf t t R 3.. F C (R) F (t) xe x si(tx) dx [ e x si(tx) ] }{{} t xe x cos(tx) dx. } {{ } F (t) F () π (.3.4). 3.. m m e (x m) +itx dx e x +it(x+m) dx e itm e x +itx dx. m e itm m ( 3.. F C (R), h C(R) F t hf F (t) F () exp ) ( h ) t G(t) exp h (F/G) 3..3 3..3 (x m) π xe dx m, π (x m) e (x m) dx. 3..4 3.. 3.. e tx si x x dx π Arct t (t [, )) 3..5 3..4 3.. 3..6 ( ) t, u (i) ( exp ( x t ) ) x dx t exp (ii) ( ) exp x t dx πe t. 4x cos(tx)e u(+x ) π ( ( ) ) y t dy y π y. u exp ( x t 4x ) (iii) dx dx, +x (i), ( + )/ (iii) u 3.. cos(tx) dx π +x e t. 3..4 ( ) R f C m () (m, ) () f f (b) f (k) ( k m) f C m () x, k m f (k) (x) lim f (k) (x). A m, P m A m P m m m g(x) lim f (x) ( ).. g C()., x, x J J

() f (x) f () + x f. f g (J ). () (..) f(x) f() + f C (), f g. P m 3..7 3..4 x g. 3.. ():t, t J, t t 3.. lim f t (x) f t (x), (x ) f t..3 F lim f t (x) dx f t (x) dx. (b): 3..4 ( 3..) u, {, b} F u, (t) u f t F F,c + F c,b F F,c, F c,b F c,b ( 3..) F c, C m (J) F c, (l) (t) t l f t, l,.., m. c t J l,.., m lim F c,(t) F c,b (t) b lim F c, (l) (t) b c l t f t (t J ). 3..4 F c,b C m (J), F (l) c,b (t) t l f t c 3.3 3.3. : (, b), (c, d) R f C((, b) (c, d)) dx d c f(x, y) dy d c dy f(x, y) dx.

(, b) x d c f(x, y)dy, (c, d) x f(x, y)dy dx d c f(x, y)dy d c dy f(x, y)dx. 3.3. ( [, ] 3.3. e x def e x 3.3. dx π (.3.4. dx π/ e x dy dx e y dy e (+y )x xdx e x dx dy e x y xdy + y π/. 3.3.3 u, > B(u, ) Γ(u)Γ() Γ(u + ) (.3.3 ). B(u, ) Γ(u)Γ() Γ(u + ) (.7),(.8) (.7) (u + )(u + + ) B(u +, + ), u (u + )(u + + ) Γ(u + )Γ( + ). u Γ(u + + ) u, u +, + u, > u, > x, x < g u (x) x u e x, g u (x) g u C(R). g f(x, y) g u (x y)g (y) f C(R ) f(x, y)dx g (y) y g u (x y)dx g (y) g u (x)dx g (y)γ(u). () () dy f(x, y)dx Γ(u)Γ(). x f(x, y)dy e x (x y) u y dy x u+ e x B(u, ). dx f(x, y)dy Γ(u + )B(u, ). 3

3.3. dy 3.3.4 t f(x, y)dx dx f(x, y)dy tx si x e x dx π Arct t. ( 3.3.4 ) t > 3.. t ( ) x > e xt x t e xy dy. tx si x e x dx dx t e xy si x dy. () e xy si x dx () t dy e xy si x dx t dy + y π Arct t. +y () Fubii f(x, y) e xy si x f(x, y) e xy x. dx t f(x, y) dy ( ) x dx t e xy dy e xt dx /t <. Fubii 3.3. t cos(tx) dx π +x e t 3..6. +x e (+x )y dy 3.3. ( 9 cos x si x ) dx dx x x t e xy dy π x π. def. t π e ix tx x dx dx e (y +t i)x dy. t > f(x, y) e (y +t i)x 3.3. 9 Augusti Je Fresel (788 87) 4