多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

Similar documents
MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

第5章 偏微分方程式の境界値問題

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

空間多次元 Navier-Stokes 方程式に対する無反射境界条件

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

! " # Engineering First

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri


Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun

30

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

横組/中高 技術科問題           ●

2日目 10月31日(金曜日)プログラム


本文/110 国際競争時代のコストP21‐41

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)

カルマン渦列の消滅と再生成のメカニズム

Sigma

流体とブラックホールの間に見られる類似性・双対性

untitled


D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

CSR レポート 2009

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

高密度荷電粒子ビームの自己組織化と安定性

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,,

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Ax001_P001_目次-1.ai



株式会社日清製粉グループ本社 第158期中間事業報告書

一般相対性理論に関するリーマン計量の変形について

全ページ.indb

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

RX501NC_LTE Mobile Router取説.indb

ランダムウォークの境界条件・偏微分方程式の数値計算

IPSJ SIG Technical Report Vol.2014-HPC-143 No /3/3 Identity Parareal 1,2,a) 3 Parareal-in-Time (identity) Identity Parareal, Parareal-in-Time,

Q 23 A Q Q15 76 Q23 77

TM

untitled

27 1: Lewis $Le_{i}$ $\mathrm{c}\mathrm{h}_{4}$ CO $\mathrm{c}\mathrm{o}_{2}$ $\mathrm{h}_{2}$ $\mathrm{h}_{2}\mathrm{o}$ $\mathrm{n}_{2}$ O2 $Le_{i}$

本文/報告2

第86回日本感染症学会総会学術集会後抄録(II)

音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用)




Transcription:

1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury)

49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial v}{\partial t}+v\cdot\nabla v)=-\nabla p+\eta\nabla^{2}v+\eta \nabla(\nabla\cdot v)_{:}$ $( \frac{\partial\rho}{\partial t}+v\cdot\nabla\rho)=-\rho\nabla\cdot v$ $( or\frac{\partial\rho}{\partial t}+\nabla\cdot(\rho v)=0)$ $\rho=\rho(p)$. $\rho$ $vp$ $\eta $ $\eta$ $\rho_{0}\frac{\partial v}{\partial t}=-\nabla p+\eta\nabla^{2}v+\eta \nabla(\nabla\cdot v)$ (2.1) $\frac{1}{k_{f}}\frac{\partial p}{\partial t}=-\nabla\cdot v$ (2.2) $\rho_{0}=\rho(p_{0})$ $\frac{1}{k_{f}}=\frac{1}{\rho}\frac{\partial\rho}{\partial p} _{p_{o}}$ (2.3) Stokes 2 $K_{f}$

$\lambda$ 50 $u$ $\mu$ $\hat{\epsilon}$ $\hat{\sigma}$ Lam\ e $\rho\frac{\partial^{2}u}{\partial t^{2}}-\nabla\cdot\hat{\sigma}=0$ (2.4) $\hat{\sigma}=2\mu\hat{\epsilon}+\lambda(i;\hat{\epsilon})i$ (2.5) $\hat{\epsilon}=\{(\nabla u)+(\nabla u)^{t}\}/2$ (2.6) 1 Navier 2 Hooke Navier 2.2 Darcy $q$ Darcy $q+ \frac{k}{\eta}\nabla p=0$ (2.7) $k$ $\eta$ (porocity) $\phi$ $v$ $q$ porocity $q=\phi v$ (2.8) $\frac{\partial(\phi\rho_{f})}{\partial t}+\nabla\cdot(\phi\rho_{f}v)=0$ $q$ $\frac{1}{\rho_{f}}\frac{\partial(\phi\rho_{f})}{\partial t}+\nabla\cdot q=0$ (2.9) $\frac{\phi}{k_{f}}\frac{\partial p}{\theta t}+\nabla\cdot q=0$

51 $q+ \frac{k}{\eta}\nabla p=0$ (210) $\frac{\phi}{k_{f}}\frac{\partial p}{\partial t}+\nabla\cdot q=0$ (211) Darcy 2.3 Biot Darcy Navier Biot [2]. Biot [3][8][5]. $(\hat{\sigma}\hat{\epsilon})$ $(p \phi)$ $\Psi_{s}=\Psi_{s}(\hat{\epsilon} \phi)$ (212) $d\psi_{s}=\hat{\sigma}$ : $d\hat{\epsilon}+pd\phi$ (213) $G_{s}=\Psi_{s}-p\phi$ (214) $G_{s}=G_{s}(_{\vee} \hat{\epsilon}p);\hat{\sigma}=\frac{\partial G_{s}}{\partial\hat{\epsilon}}(\hat{\epsilon}p);\phi=-\frac{\partial G_{s}}{\partial p}(\hat{\epsilon}p)$ (215) $d\sigma_{i_{\dot{j}}}=\frac{\partial\sigma_{ij}}{\partial\epsilon_{kl}}d\epsilon_{kl}+\frac{\partial\sigma_{ij}}{\partial p}dp$ $= \frac{\partial^{2}g_{s}}{\partial\epsilon_{kl}\partial\epsilon_{ij}}d\epsilon_{kl}+\frac{\partial^{2}g_{s}}{\partial p\partial\epsilon_{ij}}dp$ $d\phi=\frac{\partial\phi}{\partial\epsilon_{ij}}d$ $+ \frac{\partial\phi}{\partial p}dp$ $=- \frac{\partial^{2}g_{s}}{\partial\epsilon_{ij}\partial p}d\epsilon_{ij}-\frac{\partial^{2}g_{s}}{\partial p\partial p}dp$

$\lambda$ 52 $C_{-kl} \equiv\frac{\partial^{2}g_{8}}{\partial\epsilon_{kl}\partial\epsilon_{ij}}$ $b_{ij} \equiv-\frac{\partial^{2}g_{8}}{\partial\epsilon_{ij}\partial p}=-\frac{\partial^{2}g_{s}}{\partial p\partial\epsilon_{ij}}$ $\frac{1}{k_{\phi}}\equiv-\frac{\partial^{2}g_{s}}{\partial p\partial p}$ Cijkl $=\lambda\delta_{ij}\delta_{kt}+\mu(\delta_{ik}\delta_{jl}+\delta_{it}\delta_{jk})$ $b_{ij}=b_{w}\delta_{ij}$ $d\hat{\sigma}=d\hat{\sigma}_{s}-b_{w}$dpi (2.16) $\hat{\sigma}_{s}\equiv\mu\{(\nabla u)+(\nabla u)^{t}\}+\lambda(\nabla\cdot u)i$ $\mu$ $d\phi=b_{w}\nabla\cdot du+\frac{1}{k_{\phi}}dp$ (2.17) Lam\ e $B_{w}$ $K_{\phi}$ Biot-Wilhs [3] Biot-Willis (217) $\phi$ (2.9) $\frac{1}{\rho_{f}}\frac{\partial(\phi\rho_{f})}{\partial t}=\frac{\partial\phi}{\partial t}+\frac{\phi}{\rho_{f}}\frac{\partial\rho_{f}}{\partial t}$ $=(B_{w} \nabla\cdot\frac{\partial u}{\partial t}+\frac{1}{k_{\phi}}\frac{\partial p}{\partial t})+\frac{\phi}{\rho_{f}}\frac{\partial\rho_{f}}{\partial t}$ $\approx B_{w}\nabla\cdot\frac{\partial u}{\partial t}+(\frac{1}{k_{\phi}}+\frac{\phi_{0}}{k_{f}})\frac{\partial p}{\partial t }$ $\frac{1}{k}\frac{\partial p}{\partial t}+\nabla\cdot q+b_{w}\nabla\cdot\frac{\partial u}{\partial t}=0$ (2.18) $\frac{1}{k}\equiv\frac{1}{k_{\phi}}+\frac{\phi_{0}}{k_{f}}$ (2.19) $\phi_{0}$ $K $ Navier Hooke (2.5) Hooke (216) $\rho\frac{\partial^{2}u}{\partial t^{2}}-\nabla\cdot\hat{\sigma}_{s}+b_{w}\nabla p=0$ (2.20) $\hat{\sigma}_{s}\equiv\mu\{(\nabla u)+(\nabla u)^{t}\}+\lambda(\nabla\cdot u)i$ (2.21)

53 Biot $q+ \frac{k}{\eta}\nabla p=0$ (2.22) $\frac{1}{k}\frac{\partial p}{\partial t}+\nabla\cdot q+b_{u\prime}\nabla\cdot\frac{\partial u}{\partial t}=0$ (2.23) $\rho\frac{\partial^{2}u}{\partial t^{2}}-\nabla\cdot\hat{\sigma}+\underline{b_{w}\nabla p}=0$ (2.24) Biot $\hat{\sigma}=\mu\{(\nabla u)+(\nabla u)^{t}\}+\lambda(\nabla\cdot u)i$ (2.25) Darcy Navier $B_{w}\nabla\cdot u$ $B_{w}\nabla p$ $B_{v)}$ quasi-static Biot $\rho$ $1/K $ quasi-static Biot $q+ \frac{k}{\eta}\nabla p=0$ (2.26) $\nabla\cdot q+b_{w}\nabla\cdot\frac{\partial u}{\partial t}=0$ (2.27) $-\nabla\cdot\hat{\sigma}+b_{w}\nabla p=0$ (2.28) $\hat{\sigma}=\mu\{(\nabla u)+(\nabla u)^{t}\}+\lambda(\nabla\cdot u)i$. (2.29) 3 quasi-static Biot quasi-static Biot $\Omega$ 1

$r.\backslash _{:}:i$ $!^{:}$ $ $ $\Omega=\{(xy) x <\frac{l_{x}}{2}0<y<l_{y}\}$ $ $ $\Gamma_{2}=\{(xy)\in\partial\Omega x >\frac{l_{x}}{5}y=l_{y}\}$ 54 $y\cdot\frac{111fll1^{\triangleleft 0}\ulcorner}{}$ :: :: :.:!1 ::.!: $\Gamma_{3}=\partial\Omega\backslash :: :: : $\Gamma_{1}=\{(xy)\in\partial\Omega x \leq\frac{l_{x}}{5}y=l_{y}\}$ : (\Gamma_{1}\cup\Gamma_{2})$. $r\cdot oi.:::x\overline{--\omega J2nx\cdot*t}x\prime 2$ 1 $x\in\partial\omega$ $p(xt)=0$ $\sigma_{yy}(xt)=-\sigma_{0}$ $x\in\gamma_{1}$ $\sigma_{yy}(xt)=0$ $x\in.\gamma_{2}$ $\sigma_{xy}(x t)=0$ $x\in\gamma_{1}\cup\gamma_{2}$ $u(xt)=0$ $x\in\gamma_{3}$ $x\in\omega_{:}$ $p(xt=0)=0$ $x\in\omega$ $u(xt=0)=0$ $L_{x}=L_{y}=1$ $\mu=\underline{e}$ $2(1+\nu)$ $k=\eta=b_{w}=1$ $\sigma_{0}=1$ $\lambda=\frac{\nu E}{(1+\nu)(1-2\nu)}$ $E=3$ $\nu=0.2$ $100\cross 100$ Euler

55 1 $p:t=$ 9e-05 $p:t=$ 0.0009 1 0.8 os o.s 0.6 0.7 0.6 0.6 0.4 0.4 0.5 0.4 0.3 0.2 0.2 0.2 0.1 $0$ $0$ $0$ $-0.1$ $0$ 0.2 0.4 0.6 0.8 1 $0$ 0.2 0.4 0.6 0.8 1 2 3 $p:t=$ $0.01215$ $p:t=$ 0.0225 1 1 $-$ o.s $0.s$ 0.6 0.6 0.4 0.4 0.2 0.2 $0$ $0$ $0$ 0.2 0.4 0.6 $0.s$ 1 $0$ 0.2 0.4 0.6 $0.s$ 1 4 5 4. 5

56 4 [6]. LB (Ladyzhenskaya $B$ $-B$ abuska-brezzi) $su\triangleright\inf$ 1 [4][7]. 2 LBB [1] [1] S. Badia A. Quaini and A. Quarteroni Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction J. Comput. Phys. 228 (2009) 7986-8014. [2] M. A. Biot General Theory of three-dimensional consolidation J. Appl. Phys.. 12 (1941) 155-164. [3] M. A. Biot and D. G. Willis The elastic coefficients of the theory of the consolidation J. Appl. Mech. 24 (1957) 594-601. [4] F. Brezzi and J. Douglas Jr. Stabilized mixed methods for the Stokes problem : Numer. Math. 53 (1988) 225-235. [5] O. Coussy Poromechanics John Wiley & Sons 2004.

57 [6] M. A. Murad and A. F. D. Loula On stability and convergence offinite element approximation of Biot s consolidation problem Internat. J. Numer. Methods Engrg. 37 (1994) 645-667. [7] 2008. [8] J. R. Rice and M. P. Cleary Some basic stress-diffusion solutions for fluid saturated elastic porous media with compressible constituents Rev. Geophys. Space Phys. 14 (1966) 226-241. [9] R. E. Showalter. Poroelastic filtmtion coupled to Stokes flow : Published in Control Theory of Partial Differential Equation Lecture Notes in Pure and Applied Mathematics 242 (2005) 229-241.