18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Similar documents
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

30

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

201711grade1ouyou.pdf

Part () () Γ Part ,

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Note.tex 2008/09/19( )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

i

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

( ) ,


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

TOP URL 1

keisoku01.dvi

The Physics of Atmospheres CAPTER :

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Untitled

meiji_resume_1.PDF

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

2011de.dvi

TOP URL 1

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2


Microsoft Word - 11問題表紙(選択).docx

pdf

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

2000年度『数学展望 I』講義録

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

Z: Q: R: C: sin 6 5 ζ a, b

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d


I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

all.dvi

I ( ) 2019

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

TOP URL 1

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq


y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z


: , 2.0, 3.0, 2.0, (%) ( 2.

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

I 1

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

i 18 2H 2 + O 2 2H 2 + ( ) 3K

Gmech08.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

Chap11.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

II 2 II

sec13.dvi



I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google




July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

2,200 WEB * Ξ ( ) η ( ) DC 1.5 i

Z: Q: R: C: 3. Green Cauchy

QMII_10.dvi

量子力学 問題

b3e2003.dvi

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

( )

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

Transcription:

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t + α 2 ) (ω 1 < ω 2 ) ω 2 1 ω2 2 A 1/B 1 A 2 /B 2 (5) l = l m m ω 1 ω 2 g ω 1 = 1 1 m g, ω 2 = 1 + 1 m l 2 m l 2 m

(6) t = 0 θ = 0 θ = 0 ϕ = ϕ 0 ϕ = 0 A 1 A 2 B 1 B 2 θ(t) ϕ(t) t t t = 0 4π ω 2 ω 1 θ(t) ϕ(t) ( cosα + cosβ = 2cos α+β 2 cos α β 2 α+β α β, cosα cosβ = 2sin sin ) 2 2 g θ l m ϕ l' m'

¼µ ½µ 5678# ¼ Õ'(Ñ Á¹¾ µ ¾µ./9:;<=&>?@# 0$1#)2.34# ¼ ¼ µ ¼!"#$%& ¼ NMO>PQ@R# ¼µEF%GHIJKLM # Õ)*+$),#+$-./) Ú Ú ¼ ¼ ¼µ& Ú OS.T3ÜU,5VWXY3Z$G [G µ -ABCD ¼ ¼ rs&>_`der# T5V9:R#\R]^ µ µ_àbc3g\der# µ Ú ¼ k"#\g 567lGmnopqVG µ µk )+&> fg] hi hij./ ¼ ¼ µµ ½¼¼ µ µ Ú ¼ ¼ ¼ ½

I-3 (100 ) 1/2 s ( ) ( ) ( ) 0 1 0 i 1 0 σ 1 =, σ 2 =, σ 3 =, 1 0 i 0 0 1 s = h σ 2 s [s 1, s 2 ] = i hs 3, [s 2, s 3 ] = i hs 1, [s 3, s 1 ] = i hs 2, 1/2 µ = γs z B 0 x-y ω B 1 (t) 0 B 1 cos(ωt) B 0 = 0, B 1 (t) = B 1 sin(ωt), (A) 0 B 0 B0 B1(t) = s H(t) = µ (B 0 + B 1 (t)), t = 0 z t z P (t)

1/2 ( ) ψ + (t) ψ(t) =, ψ (t) i h ψ(t) = H(t)ψ(t), t ω 0 = γb 0, ω 1 = γb 1, (1) ( (B ) 1 = 0) ψ 0+ (t) ψ 0 (t) = ψ 0 (t) (2) ( B 1 0 ) (1) ψ 0 a + (t)ψ 0+ (t) ψ(t) = a ± (t) a (t)ψ 0 (t) (3) t = 0 z a ± (t) t z P (t) (4) P (t) (A) B 1 ω

18 II ( ) (1) II-1 II-2 II-3 (2) (3) II-1 ( ) (100 ) ( p T n p = k BTn 1 bn an2 (A) a, b k B (2) T p v v =1=n v g v l v p = p cx (T ) μ f v g v l p cx df = pdv (Maxwell (3) (A) K T =(@n=@p) T =n nk B K T = (1 bn)2 T T s (n) (B) n T s (n) T = T s (n) (4) T T c v = v g v l T s (n) n

T = T s (n) n c T c a,b n n c T T c K T (5) 2 dp = L (C) dt T v L = T s s = s g s` (C) P B P cx A v l v v g

II-2 ( ) (100 ) f(t) t M α f(t) Me αt f(t) χ(ζ) χ(ζ) = 0 f(t)e iζt dt (A) (1) χ(ζ) n χ (n) (ζ) ζ χ (n) (ζ) M n! (α + ζ 2 ) n+1 (B) ζ 2 ζ N N a i a i i=1 i=1 (2) ζ χ(ω) = 1 iπ P χ(ζ) ζ ω dζ (C) ω P F (x) x 0 x 1 < x 0 x 2 > x 0 x2 [ x0 ε x2 ] P F (x)dx = lim F (x)dx + F (x)dx x ε +0 1 x 1 x 0 +ε (3) χ(ζ) χ 1 (ζ) χ 2 (ζ) χ(ζ) = χ 1 (ζ) + iχ 2 (ζ) χ 1 (ζ) χ 2 (ζ) ζ (C) χ 1 (ω) = 2 π P χ 2 (ω) = 2 π P 0 0 ζχ 2 (ζ) ζ 2 ω 2 dζ ωχ 1 (ζ) ζ 2 ω 2 dζ (D) (E)

(4) f(t) df(t) dt + af(t) = Ae bt (F) f(t) χ(ζ) a b A a > b f(t) f(0) = 0

II-3 ( ) (100 ) (1) v v = rota, divv = 0 (A) A diva = 0 ω = rotv 2 A = ω A(r) = 1 4π d 3 r ω(r ) r r (2) e z z ω = ωe z S Γ ωs S 0 xy Γ ( ω = Γδ(x)δ(y) ) (3) (x j, y j ) Γ j j (1 j N) (2) z j x j + iy j, z j = x j iy j (B) dz j dt = 1 2πi N k=1,k j Γ j z j z k (C)

(4) (3) (C) Γ j dx j dt = H y j, Γ j dy j dt = H x j ( H (5) (D) N j=1 Γ j (x j dy j dt dx j dt y j) (E)

18 III (3 ) (1) III-1 III-9 9 3 (2) (3) (4) III-1 III-2 III-3 III-4 III-5 III-6 III-7 III-8 III-9

III-1 (100 ) U(r) m (1) (2) r θ (3) U(r) =g/r g <0 u =1/r u θ u 2 (4) r θ r = a 1+b cos θ a, b (5) b<1 a/(1 b 2 ) (6) U(r) =gr n g >0 g<0 n g n (7) (6) r 0 U(r) U (eff) (r) r r 0 ω r (8) (7) ω r g ω r θ ω θ (9) (8) n = 1 (n =2) n n (A)

III-2 (100 ) m e A H = 1 ( i h + ea)2 2m x y z L x L y L z (1) A = (0, Bx, 0) z B (2) z (3) x y y x (4) m K u N (x) = C N exp ( ) ( x2 x H 2l 2 N l ε N = (N + 1/2) hω c x E x N 0 C N N ω c = K/m l = 4 h 2 /mk H N (x/l) (5) E x ( ) L x l L y l (6) χ = Bxy χ )

III-3 ( : ) (100 ) N V f(ɛ) f(ɛ) = 1 e β(ɛ µ) 1 ɛ, µ β k B T β = 1/(k B T ) (1) µ (a) µ (b) µ = 0 (2) p m ɛ = p 2 /2m N d T N /V F d/2 (α) 0 dx xd/2 1 e x+α 1 T N d S d (S 3 = 4π, S 2 = 2π ) (3) (2) d α (4) (a) T c (b) T T c n c n N/V T, T c ζ(z) n z, Γ(x) n=1 0 t x 1 e t dt, ( 1 Γ = 2) π

(5) ɛ = cp (2) (3)

III-4 (100 ) (1) u(x, y) 2 ( ) 2 x + 2 u(x, y) = 0, 2 y 2 (r, θ) (0 r <, π θ < π) x = r cos θ, y = r sin θ, (2) (1) u(r, θ) r = 0 (3) (2) r = r 0 u(r 0, θ) = f(θ), f(θ) (4) (3) f(θ) [ π, π] f(θ) = θ, ( π θ < π),

3,456789:;7<=>?!@ &Ü'!()*+,-./0 Ü(12 ܵ,+!"#$% ÁÁÁ¹ µ HI,+,<=7MNOP A- ܵBCDÔ ÜµEFÚ ÜµGDHIJ.KL XYEQK0QKHI' Z[:;70\->?J]:;7& ',& '0\^_!<= ½µ89:;7& '0\`>&abcdeT'JXfTLg 3H Ô hij> ÚQKQHIORSTUVWH» HI& >?!`J Ú ½¼¼µ ½ Ü Úµ ¼ Ú Ú Ü Ô Ü ¼ Ô Ü Ô µ ¼ ÓÒ Ø ÒØ µ µ µ Ú µ Ô Ã ÓÒ Ø ÒØ µ,opturpvmwx+rp&yz'!{ GDM}~G, <=Hklmn3,4opqErpsE,+!š <=œˆ! > Ž db,ˆ!{ }~GxN,@Oƒ +>?!@# ˆ ŠMIX>?@&Z Œ ' @!./0MÜ,! -I,3 &Ü Ü µh Ü ¼

¼@u Gn I3, Ô, n ¼µ3, A-~G ¾µGÚ ¼M~G<=HIOtP Ü ÜµM?@t<=!\ > ¼(H ¾ Ü,! + Ú ¾ µgnm~g! - @3,MH4 Ü Ô µgn¾ Ú ¾,O!Ü,3,A-Ü!{ ~G,+ µ Ü Ü ¼!Qj J3!ˆ IuJ- >!Ú ½X3H ¼H µž dbop&z'hgú ¼X3H~G \nˆ Ú ¼ ¼ µ,-rp&yz'hgn&g'ú ½ µ,+gú ½QKQ, µ Ü Ü µ Ü Ü µ Ü Ü Ú Ú Ú Ú ~G ½>O\ 4ˆ Ú ½

III-6 ( ) (100 ) (1) (a) (b) m kg N A 6.0 10 23 /mol (c) 1 e 1.6 10 19 C h 6.6 10 34 J s (2) (a) k 1 k 2 P E k 1 k 2 m (b) k 1 k 2 0 180 P P k 1 k 1 k 2 k 2 k 1 k 2 (c) k 2 P E k 1 P E (d) E ph P ph P = P ph E = E ph v E ph = vp ph E > 0 k 1

III-7 ( : ) (100 ) (1)! ρ f R (a)!; ρ; f; R [L] [M] [T] ( ) (b)!; f; ρ; R! / f A ρ B R C A; B; C (2) 2 1 40 1 (a) X μ P (X; μ) P (X; μ) = μx X! e μ ff 2 (b) 1 2 e 2 = 0.14 (c) 2 χ 2 2 χ 2 0 11 1 12 2 11 3 4 4 2 5 0 1

2 χ 2 : ffi ( )

III-8 ( ) (100 ) ( e m) b v (dw/dν) dw dν = 4πe2 3ɛ 0 c 3 ˆ r(ω) 2 ν ω = 2πν ɛ 0 c r r 2 ˆ r(ω) r τ τ = b/v ˆ r(ω) { 1 ˆ r(ω) = rdt ω τ 1 2π (B) 0 ω τ 1 (1) dw/dν ω τ 1 ω τ 1 (B) (2) v ( ) b b+db n e n p ω τ 1 b b min b max d 3 W/dνdV dt T d 3 W dνdv dt = e 6 2π 6π 2 ɛ 3 0mc 3 3mkT n en p e hν/kt g ff (C) k h g ff d 3 W/dνdV dt α ν (A) B ν = 2hν3 c 2 1 exp (hν/kt ) 1 (D) 4πα ν B ν

(3) hν kt exp( hν/kt ) hν/kt 1 L τ ν τ ν = α ν L = 1.6 10 11 ( ne ) ( np 1 m 3 ) ( L 1 m 3 1 m ) ( ) 3/2 T ( ν ) 2 (E) 1 K 1 Hz I ν ( I ν = 2kν2 T (1 e τ ν ν ) ( ) 2 T ) = 3.1 10 40 (1 e τ ν ) c 2 1 Hz 1 K (J s 1 m 2 Hz 1 Sr 1 ) (F) (4) τ ν = 1 ν ν c ν ν c ν (5) 3 10 16 m 10 4 K J s -1 m -2 Hz -1 Sr -1 10-21 10-22 10-23 10-24 10 6 10 7 10 8 Hz

III-9 ( ) (100 ) T 5.0 10 3 K λ = 5 10 7 m T = 5.0 10 3 K (continuum) c = 3.0 10 8 m/s h = 6.6 10 34 J s k = 1.4 10 23 J/K e = 1.6 10 19 C χ = χ 0 ev T = T 0 K log 10 (e χ/kt ) = 5.0 10 3 χ 0 /T 0 (1) 13.6 ev n = 2 n = 3 n = 1 10.2 ev 12.1 ev (2) λ = 5 10 7 m n = 3 (3) T = 5.0 10 3 K n = 3 10 (4) H + N (v, v + dv) dn + dn + N = 2g+ 4πm 3 ev 2 dv exp( χ + m ev 2 /2 ) (A) g N e h 3 kt g g + N e χ m e v N + N = 2g+ (2πm e kt ) 3/2 e χ/kt (B) g N e h 3 χ = 13.6 ev T = 5.0 10 3 K g + /g = 1/2 10 6

(5) 2 H 1 0.7 ev (B) H g 1 (6) n = 3 T = 5.0 10 3 K