ohpr.dvi

Similar documents
ohpr.dvi

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

201711grade1ouyou.pdf

meiji_resume_1.PDF

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Note.tex 2008/09/19( )

振動と波動


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

ohpr.dvi

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

: , 2.0, 3.0, 2.0, (%) ( 2.

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

i

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


構造と連続体の力学基礎

TOP URL 1

pdf

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Korteweg-de Vries


5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

nsg02-13/ky045059301600033210

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

PDF

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

2005 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e



Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

2011de.dvi

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

Part () () Γ Part ,

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

量子力学 問題



I

A

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Gmech08.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

本文/目次(裏白)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

KENZOU Karman) x

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

( ) ,

untitled

6.1 (P (P (P (P (P (P (, P (, P.

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

数学の基礎訓練I

keisoku01.dvi

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

基礎数学I

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

2000年度『数学展望 I』講義録

液晶の物理1:連続体理論(弾性,粘性)

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

gr09.dvi

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

Microsoft Word - 11問題表紙(選択).docx

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [


Morse ( ) 2014

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

( ) ( )

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

newmain.dvi

6.1 (P (P (P (P (P (P (, P (, P.101

Transcription:

2003/12/04

TASK PAF

A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD

ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J : J = 1 e 1 e 2 e = 1 3 ψ θ ϕ g : e i r/ x i g ij = e i e j

E ω c E = ω2 c 2 ɛ E +iωµ0 j ext ɛ : j ext : ( E) 1 = 1 J [ { ( g31 E3 x 2 J x E ) 2 2 x 3 { ( g21 E3 x 3 J x E ) 2 2 x 3 + g 32 J + g 22 J (x 1,x 2,x 3 ) (ψ, θ,ϕ) ( E1 x E ) 3 3 x 1 ( E1 x E ) 3 3 x 1 + g 33 J + g 23 J ( E2 x E )} 1 1 x 2 ( E2 x E )}] 1 1 x 2

ɛ z ê s = ψ ψ, ê b = ê h ê ψ, ê h = B 0 B 0 µ µ 1 g 11 d Jg 11 E 1 E 2 E 3 c 2 g 12 + c 3 g 13 0 c 3 J g 11 c 2 g 22 + c 3 g 23 0 c 2 J g 11 c 2 g 32 + c 3 g 33 = µ ɛ = µ ɛ sbh E s E b E h c 2 = B θ /B, c 2 = B φ /B d = c 2 (g 23 g 12 g 22 g 31 )+c 3 (g 33 g 12 g 32 g 31 ) g 11 =(g 22 g 33 g 23 g 32 )/J 2 µ 1

E(ψ, θ, ϕ) = mn E mn (ψ)e i(mθ+nϕ) G(ψ, θ, ϕ) = lk G lk (ψ)e i(lθ+kn pϕ) J( E) =G(ψ, θ,ϕ)e(ψ, θ, ϕ) = m n [J( E)] m n ei(m θ+n ϕ) N h : E n m kn h l J( E) n m n = n + kn h m = m + l

ɛ (ψ, θ, ϕ, k m n ) Z[(ω Nω cs )/k m n v Ts ] k m,n k m,n = iê h = iê h ( θ θ + ϕ ϕ )= iê h (e 2 θ +e3 Bθ Bϕ )=m +n ϕ B B ɛ sbh (J ɛ E) i = J g 1 µ ɛ sbh µ 1 E i m l 3 l 2 l 1 m n k 3 k 2 k 1 n m = m + l 1 + 1 2 l 2 n = n + k 1 + 1 2 k 2 m = m + l 1 + l 2 + l 2 n = n + k 1 + k 2 + k 3

TASK/WM Fortran77 + MPI 16 50 Elapsed Time [sec] 2800 2400 2000 1600 1200 800 400 Dispersed Gauss(PARA) ILDUBCG(PARA, BLK) ILDUCGS(PARA, BLK) ILDUBCGSTAB(PARA, BLK) Reduced Gaussi(PARA, BLK) ILDUBCG(PARA, BLK, APP) ILDUCGS(PARA, BLK, APP) ILDUBCGSTAB(PARA, BLK, APP) 0 1 2 3 4 5 6 7 8 Number of Processor

LHD (B 0 =3T,R 0 =3.8m) f =42MHz,n φ0 = 20, n e0 =3 10 19 m 3, n H /(n He + n H )=0.235, N rmax = 100, N θmax =16(m = 7...7), N φmax =4(n =10, 20, 30)

42 MHz 44 MHz 46 MHz 48 MHz 42 MHz 44 MHz 46 MHz 48 MHz P abs (arb.) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 25 30 35 40 45 50 55 60 f [MHz]

PAF PAF: Plasma Analysis with Finite element method WF: (3D) MF: TF: (2D) FF: PF: (2D) MG: MX:

PAF/WF: ω : Ẽ(r,t)=E(r)e i ωt : E ω2 c 2 ɛ E =iωµ0 j ext ɛ : :

H. Kousaka and K. Ono: JJAP 41 (2002) 2199 FDTD: : f =2.45 GHz

E z (r, z) n e =10 16 m 3 n e =10 17 m 3 2D 3D (Real part) 3D (Imag part)

E z (r, z) n e =2 10 17 m 3 n e =3 10 17 m 3 2D 3D (Real part) 3D (Imag part)

E z (z) 2D Analysis n e =10 16 m 3 3D Analysis n e =10 17 m 3 Ref.: H.KousakaandK.Ono JJAP 41 (2002) 2199 n e =2 10 17 m 3 n e =3 10 17 m 3

ICP Diameter=0.48 m Height=0.3m Frequency=13.56 MHz Antenna Plasma

x =0

x = x + v(t t ) v t t x E(x ) Vlasov df(x,t ) = q dt m E(x,t ) f 0(v) v qn t ) 0 f(x, v, t) = dt ve(x,t )exp ( mv2 (2πT/m) 3/2 T 2T j(x, t) = f(x, v, t) K(x x,t t )= j(x, t) = dvqvf(x, v, t) qn 0 (2πT/m) 3/2 T dx K(x x,t t ) E(x,t ) [ t dt x x t t exp m 2T ( ) ] x x 2 t t

n(x) =n 0 e κx Φ(x) = κt q x 1 β 2 E(x) dx ɛ (x x ) E(x )=0 ɛ (x x )=δ(x x ) I i ω2 p0 ω e κ(x+x ) 2 (x x ) 2 U 2 κ 2 U 2 i n y β[(x x )U 0 κu 2 ] 0 i n y β[(x x )U 0 + κu 2 ] U 0 n 2 yβ 2 U 2 0 0 0 U 0 U n = U n (ω(x x )/ T/m, κ 2 + n 2 yβ 2, ) T/m, β = T/m/c U n (ξ,η) = 1 [ dτ τ n 1 exp 1 ξ 2 2π 2τ 1 ] 2 2 η2 τ 2 +iτ 0

(ω 2 p/ω 2 ) max =2,(ω 2 p/ω 2 ) min =0, n y =0.2 β =0.1 E x E y P abs 37.7%

0.6 0.5 Absorption Rate 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 n y

( B(z) =B 0 1+ x ) L 1 β 2 E(x) dz ɛ (z,z ) E(z )=0 ɛ (z,z )=δ(z z ) I i ω2 p0 ω 2 (χ + χ )/2 i(χ χ )/2 0 i(χ χ )/2 (χ + χ )/2 0 0 0 χ 0 χ 0 = (1 + κz)(1 + κz ) (1 + κ(z + z )/2) χ ± = (1 + κz)3/2 (1 + κz ) 3/2 U (1 + κ(z + z )/2) 2 0 (ξ ± ) [ ξu 2 (ξ) κ 2 2(1 + κ(z + z )/2) 2U 2(ξ) ξ = ω(z z ), ξ ± = (ω +Ω)(z z ), Ω= qb 0 T/m T/m m (1+(z +z )/2L), κ = U n (ξ) = 1 2π 0 dθ exp θn+1 [ 1 ξ 2 ] 2θ +iθ 2 ] T/m ωl

ω 2 pe /ω2 =0.1

n y =0.2

n y =0.5