2005 1

Similar documents

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

ohpr.dvi

5b_08.dvi

untitled

1

FDTD(Finite Difference Time Domain) Maxwell FDTD FDTD FDTD (FFT) FDTD CP(Contour-Path)-FDTD i

untitled

untitled


Doctor Thesis Template

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

main.dvi

吸収分光.PDF

L L L L C C C C (a) (b) (c) 4.4 (a) (b) (a) RG59/U 6.2mm ( ) 73Ω web page (c) 4 4 dx 4 J V dx dj Ydx Zdx dv Z,Y dv = JZdx, dj = VYdx (4.8) d 2 J dx 2

untitled

A Study of Small Built-in Antenna for Hand held Terminal

Part () () Γ Part ,

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

c 2009 i

Z: Q: R: C:

LD

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

II 2 II

GD152

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

4 1 Ampère 4 2 Ampere 31

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

MKT-TAISEI Co.,Ltd.

皆空の中で... 1.アンテナと共振周波数

飽和分光

14 2 5

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5

LLG-R8.Nisus.pdf

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

鉄鋼協会プレゼン


untitled

JIS Z803: (substitution method) 3 LCR LCR GPIB

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

201711grade1ouyou.pdf

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

Microsoft Word - 信号処理3.doc

I

untitled

untitled

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

TSP信号を用いた音響系評価の研究

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

Keysight MIMO MIMO Cluster n Path n σ n, AoA σ n, AoD Θ n, AoA MS/UE Array Boresight Rx0 Tx0 Θ n, AoD LOS BS Array Boresight Θ n+1, AoA Rx1 Tx1 Path n


(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +


( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

IEEE ZigBee 2.4GHz 250kbps O-QPSK DSSS Bluetooth IEEE GHz 3Mbps G-FSK FHSS PC LAN IEEE b 2.4GHz 11Mbps CCK DSSS LAN LAN IEE

Gmech08.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

量子力学 問題


Unidirectional Measurement Current-Shunt Monitor with Dual Comparators (Rev. B


DVIOUT-fujin

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ


A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

デジタルICの電源ノイズ対策・デカップリング


通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

数学の基礎訓練I

22 Robust Control of belt driving two inertial systems with consideration of load inertial variation

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

Undulator.dvi

日歯雑誌(H19・5月号)済/P6‐16 クリニカル  柿木 5

pdf

seminar0220a.dvi


16-Bit, Serial Input Multiplying Digital-to-Analog Converter (Rev. B

MainOfManuscript.dvi

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

gk9c02a.dvi

Transcription:

2005 1

1 1 2 2 2.1....................................... 2 2.2................................... 5 2.3 VSWR................................. 6 2.4 VSWR 2............................ 7 2.5....................................... 9 2.6................................... 9 2.7 (MF)............................... 10 2.8.............................. 11 3 PIAA 12 3.1.................................. 12 3.2....................................... 13 3.3....................................... 13 3.4.......................................... 14 3.4.1..................................... 14 3.4.2.................................. 15 3.4.3...................... 16 3.4.4......................... 16 3.4.5...................... 17 4 18 4.1....................................... 18 4.2.......................................... 19 4.2.1..................................... 19 4.2.2..................................... 20 4.2.3................................... 22 4.3....................................... 24 4.4...................................... 25 5 27 5.1....................................... 27 5.2 PIFA........................................ 28 5.2.1 Width................................ 29 5.2.2 Depth................................ 30 5.2.3 Height................................ 31 5.2.4 distance............................... 32 5.2.5............................... 33

5.3...................................... 35 5.4...................................... 37 5.4.1................................... 37 5.4.2 A................................ 37 5.4.3 B........................... 37 5.5............................. 40 5.6.................................. 42 5.6.1................................... 42 5.6.2..................................... 43 5.6.3..................................... 44 5.6.4................................... 45 6 47 48 49

1 2001 GPS 2006 2007 (4G) GPS 3 (1)2 (2) (3) 1

2 2.1 (FEM: Finite Element Method) (FDTD : Finite Difference Time Domain method) (MoM: Method of Moments) WIPL-D R.F.Harrington 1: (a) (b) (c) 1(a) L a z d 1[V] λ (a λ)/200) z 0 0 0 2

z Ez i E z (J z ) = E i z (1) 2 d E i z = { E i z ( d 2 z d 2 ) 0 ( L 2 z g 2, g 2 z L 2 ) (2) ( ) Ez i E z(j z ) J z z (1) 1(b) M+1 M z = L (3) M + 1 M=3 1(b) 0 4 n=1,2,3 J z (z ) 2 (2 z) M J zn (z ) I n J z (z ) = M n=1 I n J zn (z ) (4) z z sin[k 0 (z z n 1 )] J zn (z SN (z n 1 z z n ) sin[k ) = 0 (z n+1 z )] SN (z n z z n+1 ) 0 otherwise k 0 = 2π λ (6) SN = sin(k 0 z) (7) 1(b) I n a λ z J zn m z E m z (5) E m z = j30 SN [exp( jk 0r n 1 ) R n 1 CS exp( jk 0r n ) R n + exp( jk 0r n+1 ) R n+1 ] (8) CS = 2cos(k 0 z) R 2 n 1 = a 2 + (z z n 1 ) 2 R 2 n = a 2 + (z z n ) 2 R 2 n+1 = a 2 + (z z n+1 ) 2 3

L 2 < E(z),J w (z) >= E(z) J w (z)dz (9) L 2 E(z) J z (z ) J w (z) a z (1) δ (8) (9) (8) J zm (m = 1,2, ) E z -Ez i ẑ z M n=1 I n < ẑe z (J zn ),ẑj zm >=< ẑe i z,ẑj zm > (m = 1,2,,M) (10) M 1 M Z mn I n = V m (m = 1,2,,M) (11) n=1 [Z][I] = [V ] (12) (12) [Z] M M [I] [V] 1 M [Z] Z mn z m 1,z m+1 z n 1,z n+1 2 z 2 z m z n Z mn (10) zm Z mn = sink 0 (z z m 1 ) z m 1 SN zm+1 sink 0 (z m+1 z) E z (z)dz z m SN (13) Ez m (z) z J zn (13) I n (11) (4) 1/I n [1][2][3] 4

2.2 Z Z = R + jx (14) R X X X S (S 11 ) S S = u + jv (15) S Z S = Z 1 Z + 1 Z Z = 1 + S 1 S (15) (17) (16) (17) 1 + (u + jv) Z = 1 (u + jv) (1 + u) + jv = (1 u) jv {(1 + u) + jv}{(1 u) + jv} = {(1 u) jv}{(1 u) + jv} = 1 u2 v 2 (1 u) 2 + v 2 + j 2v (1 u) 2 + v 2 (18) R = 1 u2 v 2 2v (1 u) 2 + v 2 X = (1 u) 2 + v 2 (19) 5

2.3 VSWR Z 0 Z L Z 0 = Z L Z 0 Z L V min V max V min V max VSWR = V max V min (20) V f V r Γ Γ = V r V f = Z L Z 0 Z L + Z 0 (21) Γ 1 VSWR 2 VSWR = 1 + Γ 1 Γ Γ 1 3 2 (22) (23) 33% 11% Z 0 Z L Γ = Z L Z 0 Z L + Z 0 = 0 (24) VSWR= 1 Γ = 1 VSWR= [4] 6

2.4 VSWR 2 (21) Γ Γ = Z L Z 0 Z L + Z 0 Z 0 = 50 + j0 [Ω] Z L = R + jx [Ω] Γ = (R + jx) (50 + j0) (R + jx) + (50 + j0) = (R 50) + jx (R + 50) + jx (25) = (R 50) 2 + X 2 ) (R + 50 2 + X 2 ) (26) (23) VSWR 2 Γ 1 3 0 (R 50)2 + X 2 (R + 50) 2 + X 2 1 9 (27) 9{(R 50) 2 + X 2 } (R + 50) 2 + X 2 (28) VSWR=1 R=50,X=0 VSWR=2 R=50[Ω] X X=0[Ω] R 7

(i) R=50[Ω] R=50 (28) 9X 2 = 10000 + X 2 X 2 = 1250 X ±35.4 (29) 2 R=50Ω X 2: VSWR VSWR (ii)x=0[ω] X=0 (28) 9(R 50) 2 = (R + 50) 2 R = 25,100 (30) 3 X=0Ω R VSWR 3: VSWR (29) (30) VSWR 2 25 R 100 X < 35.4 4 VSWR 2 4: R X VSWR 8

2.5 5 VSWR VSWR 2 f 1 f 2 f 0 f 0 = f 1 + f 2 2 (31) (Bandwidth) BW = f 2 f 1 f 0 100 [%] (32) 5: 2.6 xy y 6 7 E z H x E x H z z z Ez Hz x Hx y x Ex y 6: 7: 9

2.7 (MF) (MF: Matching Factor) 8 VSWR 2 MF VSWR 2 VSWR [5] 8: VSWR f 2 V SWR( f ) f = f MF = 1 M VSWR (33) MF = f2 f 1 V SWR( f )d f f (34) f 1 VSWR 2 f 2 M VSWR 2 f MF 1 MF 2 10

2.8 9 9: ( ) 2 (MMSE: Minimum Mean Square Error) SNR (MSN: Maximum Signal-to-Noise ratio) (DCMP: Directional Constrained Minimization of Power) (PI: Inversion) (CMA: Constant Modulus Algorithm) [6] 11

3 PIAA (PIAA: Power Inversion Adaptive Array) ( -1) PIAA SIR 2 PIAA [7][8] 3.1 10 [9][10] L1,L2 w1,w2 ti Z L1 ti = [1,0] T w1,w2 10: 12

3.2 11 2GHz 4GHz XZ SIR -20dB 100 φ=0[ ],θ=-90[ ] φ=0[ ],θ=30[ ] 11: 3.3 12 λ/4 L Z L Z L1 Z L1 = 50[Ω] Z L2 = [Ω] px=37.5[mm],py=50[mm] S 2GHz S=12.5mm(λ/12) 4GHz S=25mm(λ/3) 12: 13

3.4 3.4.1 5[V] 50[V] Z L1,Z L2 1 2 Z L1 62.95µA - j182.5µa -1.08mA + j1.42ma Z L2-96.50µA - j85.25µa -2.19mA + j783.5µa 1: (2GHz) Z L1-27.10µA - j0.12µa -834.2µA - j153.2µa Z L2-93.17µA - j41.09µa 10.59µA - j790.5µa 2: (4GHz) 100 PI 3 4 1 w 1 w 2 Re Im Re Im w 1 0-0.6333 0.4069 3: (2GHz) w 1 w 2 Re Im Re Im w 1 0-0.1534 0.9225 4: (4GHz) 14

3.4.2 13 5 6 13: PIAA 2.89[dBi] 2.46[dBi] -1.11[dBi] -15.58[dBi] 4.00[dB] 18.04[dB] 5: (2GHz) PIAA -14.57[dBi] -1.87[dBi] -3.22[dBi] -11.08[dBi] -11.35[dB] 9.21[dB] 6: (4GHz) 2[GHz] 4.00[dB] 18.04[dB] 14.04[dB] 4[GHz] -11.35[dB] 9.21[dB] 20.56[dB] 15

3.4.3 14 14: 20dB 20dB 18.04dB 3.4.4 15 15: -10dB 16

-10dB 20.36dB 3.4.5 θ=-90 16 17 16: 17: 75 15dB θ=-75 θ=-45 2 θ=-90 17

4 IMT-2000 LAN 4 [11][12] [13] 2 [14] 4.1 18 40mm Γ 25mm Γ Antenna1 Antenna2 18: 18

4.2 4.2.1 px=20mm,py=45mm Antenna1,Antenna2 VSWR 19 20 19: VSWR 20: Antenna1 1.72 2.53GHz Antenna2 2.50 3.62GHz VSWR 2 38.1%,36.6% 1.72GHz 3.62GHz 71.2% 4 VSWR 19

4.2.2 21 1[V] [ma] 22 ( 1) 1 23 21: (Antenna1) 22: 23: (Antenna1) 4 6 Antenna1 2 Γ Γ 20

24 Antenna2 1[V] [ma] 25 ( 4) 1 26 24: (Antenna2) 25: 26: (Antenna2) 4 6 1 3 Antenna1 2 Γ Γ 21

4.2.3 Antenna1 1.86GHz,2.12GHz,2.41GHz XY 27 XZ 28 27: XY (Antenna1) 28: XZ (Antenna1) XY XZ Γ 22

Antenna2 2.67GHz,3.06GHz,3.39GHz XY 29 XZ 30 29: XY (Antenna2) 30: XZ (Antenna2) XY Y XY XZ Antenna1,Antenna2 -x (5mm) Antenna1,Antenna2 23

4.3 py Antenna1 VSWR 31 Antenna2 VSWR 32 31: (Antenna1) 32: (Antenna2) py py 7 py=45mm Antenna1 Antenna2 VSWR 2 py[mm] Antenna1 Antenna2 35 1.91-2.03GHz(6.1%) 2.72-3.75GHz(31.8%) 40 1.80-2.12GHz(16.3%) 2.59-3.76GHz(36.9%) 45 1.72-2.53GHz(38.1%) 2.50-3.62GHz(36.6%) 50 1.66-2.48GHz(39.6%) 2.42-2.83GHz(15.6%) & 3.07-3.46GHz(11.9%) 55 1.60-2.39GHz(39.6%) 2.36-2.61GHz(10.1%) 7: py 24

4.4 Antenna1,Antenna2 2 2 33 34 Antenna1 VSWR 33: (Antenna1 VSWR ) 34: (Antenna1 ) Antenna1 33 34 2.4GHz R,X 1.9GHz 2.4GHz R,X 2 VSWR 25

35 36 Antenna2 VSWR 35: (Antenna2 VSWR ) 36: (Antenna2 ) Antenna2 35 36 2.7GHz R 50[Ω] X 0[Ω] 3.5GHz 2.7GHz 2 26

5 8 NTT Docomo,vodafone 1.94-2.17GHz VSWR 2 [MHz] [MHz] NTT Docomo 1947.6-1957.4 2137.6-2147.4 vodafone 1967.6-1977.4 2157.6-2167.4 au 887.85-924.25 832.75-869.25 8: ( ) 1.94GHz 2.17GHz 5.1 37 PIFA 1mm Plate1 Plate2 Plate1 55mm 40mm Plate2 60mm 40mm Plate2 Plate1 (OPEN ) F (PIFA) Γ (CLOSE ) Γ 37: 27

5.2 PIFA 38 PIFA py=55mm px=40mm PIFA H[mm] PIFA D[mm] W[mm] d[mm] W=26[mm],D=10[mm],H=6[mm],d=4[mm] 38: 28

5.2.1 Width PIFA W VSWR 39 40 41 9 MF 39: Width VSWR 40: Width (R) 41: Width (X) W[mm] f 1 [GHz] f 2 [GHz] f 0 [GHz] BW[%] MF 26 1.88 2.22 2.050 16.58 1.49 27 1.83 2.14 1.985 15.61 1.47 28 1.79 2.07 1.930 14.50 1.45 29 1.75 1.99 1.870 12.83 1.44 30 1.71 1.93 1.820 12.08 1.48 9: PIFA MF 39 W W=29mm MF 1.44 MF 29

5.2.2 Depth PIFA D VSWR 42 43 44 10 MF 42: Depth VSWR 43: Depth (R) 44: Depth (X) D[mm] f 1 [GHz] f 2 [GHz] f 0 [GHz] BW[%] MF 6 2.16 2.50 2.330 14.59 1.54 8 2.01 2.37 2.190 16.43 1.53 10 1.88 2.22 2.050 16.58 1.49 12 1.78 2.07 1.925 15.06 1.46 14 1.70 1.92 1.810 12.15 1.53 10: PIFA MF 42 D D=12mm MF 1.46 MF PIFA MF 30

5.2.3 Height H VSWR 45 46 47 11 MF 45: Height VSWR 46: Height (R) 47: Height (X) H[mm] f 1 [GHz] f 2 [GHz] f 0 [GHz] BW[%] MF 3 2.16 2.32 2.240 7.14 1.81 4 2.04 2.32 2.180 12.84 1.55 5 1.95 2.28 2.115 15.60 1.43 6 1.88 2.22 2.050 16.58 1.49 7 1.81 2.13 1.970 16.24 1.58 11: MF 45 H H=5mm MF 1.43 31

5.2.4 distance d VSWR 48 49 50 12 MF 48: distance VSWR 49: distance (R) 50: distance (X) d[mm] f 1 [GHz] f 2 [GHz] f 0 [GHz] BW[%] MF 3 1.83 2.06 1.945 11.82 1.59 4 1.88 2.22 2.050 16.58 1.49 5 1.94 2.35 2.145 19.11 1.45 6 2.01 2.45 2.230 19.73 1.43 7 2.09 2.54 2.315 19.43 1.48 12: MF 48 d d=6mm MF 1.43 49 d R 32

5.2.5 5.2.1 5.2.2 PIFA MF Width+Depth 51 W VSWR 52 53 13 MF 51: VSWR W*D[mm] f 1 [GHz] f 2 [GHz] f 0 [GHz] BW[%] MF 11*25 1.84 2.09 1.965 12.72 1.45 16*20 1.84 2.15 1.995 15.53 1.46 21*15 1.85 2.19 2.020 16.83 1.46 26*10 1.88 2.22 2.050 16.58 1.49 31* 5 1.84 2.12 1.980 14.14 1.49 13: MF 51 MF + PIFA W=26mm,D=10mm 33

52: (R) 53: (X) 34

5.3 40mm 15mm PIFA PIFA PIFA VSWR 54 VSWR 1.94GHz 2.17GHz VSWR 2 50[Ω] 54: 55 VSWR VSWR 56 57 VSWR 14 PIFA Γ 1.94GHz R 130[Ω] VSWR 3 2.06GHz Γ VSWR f 0 [GHz] BW[%] V SWR L V SWR H PIFA 1.88-2.22 GHz 2.05 16.6% 1.47 1.68 PIFA+Γ (PIFA ) 2.01-2.16 GHz 2.085 7.2% 2.98 2.03 PIFA+Γ (Γ ) 1.94-2.22 GHz 2.08 13.5% 1.98 1.59 14: PIFA MF 35

55: PIFA VSWR 56: PIFA (R) 57: PIFA (X) 36

5.4 5.4.1 (CLOSE ) VSWR 2 10mm Γ 58 10mm A[mm] B[mm] 58: 5.4.2 A B=5[mm] A 59-9.54dB VSWR=2 2.06GHz CLOSE XZ E φ 60 YZ E θ 61 59 A 60 61 A YZ A=18mm 7.4dB(5.5 ) 5.4.3 B A=20[mm] B 62 2.06GHz CLOSE XZ E φ 63 YZ E θ 64 62 B 63 64 B B=4mm 6.5dB(4.5 ) 37

59: A 60: A (XZ,E φ ) 61: A (YZ,E θ ) 38

62: B 63: B (XZ,E φ ) 64: B (YZ,E θ ) 39

5.5 65 s VSWR 66 2.06GHz CLOSE XZ E φ 67 YZ E θ 68 s MF s VSWR s VSWR s=15[mm] 65: 66: s VSWR 40

67: s (XZ,E φ 68: s (YZ,E θ ) 41

5.6 5.6.1 69 VSWR 38[mm] Γ 10[mm] 26[mm], 6[mm] PIFA 35[mm] Γ OPEN PIFA Γ CLOSE Γ 69: 42

5.6.2 Γ OPEN CLOSE PIFA VSWR 70 71 72 MF 15 70: VSWR f 0 [GHz] BW[%] V SWR L V SWR H OPEN 1.95-2.22 GHz 2.085 12.9% 2.06 1.62 CLOSE 1.99-2.17 GHz 2.08 8.7% 2.41 1.93 PIFA 2.00-2.16 GHz 2.08 7.7% 2.91 2.05 15: MF 71: (R) 72: (X) 72 1.94GHz R 1.9GHz VSWR 2 VSWR 3 43

5.6.3 73 1.94GHz,2.06GHz,2.17GHz [ma] 74 1 75 73: 74: 75: 75 1.94GHz 72 1.94GHz 44

5.6.4 76 77 78 PIFA,OPEN,CLOSE XZ YZ 16 OPEN CLOSE 30 150 210 330 76: (PIFA ) OPEN CLOSE [dbi] [dbi] [db] [dbi] [dbi] [db] XZ(1.94GHz) 1.56(30 ) 1.82(330 ) -0.23dB 3.65(75 ) -4.28(260 ) 7.93dB XZ(2.06GHz) 2.48(30 ) 2.75(330 ) -0.27dB 2.79(65 ) -3.43(330 ) 6.22dB XZ(2.17GHz) 2.50(30 ) 2.77(330 ) -0.27dB 2.48(65 ) -1.11(330 ) 3.59dB YZ(1.94GHz) -0.43(130 ) 1.68(225 ) -2.11dB 3.88(105 ) -4.23(280 ) 8.11dB YZ(2.06GHz) -0.21(90 ) 1.22(225 ) -1.43dB 3.05(105 ) -2.69(225 ) 5.74dB YZ(2.17GHz) 0.61(100 ) 0.98(230 ) -0.37dB 2.71(105 ) -1.13(230 ) 3.84dB 16: OPEN CLOSE 76 PIFA 340 E φ E θ OPEN XZ 10dB OPEN 0dB CLOSE 3.6dB 7.9dB YZ OPEN 0 1[dBi] CLOSE 2.7-3.9[dBi] 3.8dB 8.1dB 45

77: (OPEN ) 78: (CLOSE ) 46

6 2 L 1 (PIAA) 2GHz 4.00[dB] PIAA 18.04[dB] 14.04[dB] 4GHz -11.35[dB] 9.21[dB] 20.56[dB] 75 Γ Antenna1 Antenna2 1.72-3.62GHz VSWR 2 71.2% 4 VSWR Antenna1 1.9GHz Γ 2.4GHz VSWR Antenna2 2.7GHz 3.5GHz Γ VSWR VSWR PIFA Γ VSWR OPEN CLOSE PIFA VSWR 3 VSWR 2 PIFA Γ OPEN XZ 10dB CLOSE 3.6dB 7.9dB 47

48

[1],,,,, 1996. [2], F, 2002, 2003 2. [3],, 2002, 2003 2. [4], 1 2 3 B,, 2000. [5] Z.N.Chen and M.Y.W.Chia, Broadband Suspended Plate Antenna with Probe-fed Strip, IEE Proc. Microw. Antennas Propag., Vol.148, Feb. 2001. [6],,, 2003. [7],, 2 L, 2004, B-1-209, 2004 3. [8] A. Ikeda and K. Hirasawa, A Power Inversion Flat Adaptive Array with Two Inverted-L Elements, IEEE International Conference on Communications Systems, 3P-03-01, Singapore, September 2004. [9] R.T.Compton, ADAPTIVE ANTENNAS: Concepts and Performance, Prentice Hall, pp.376-389, Jan. 1988. [10],,, - -,, No.34, 1984. [11],, 2002, 2003 2. [12],,,, 2003, B-1-150, 2003 3. [13],,, 2003, B-1-109, 2003 9. [14],,, 2004, B-1-77, 2004 9. 49