( ) URL: December 2, 2003

Similar documents
References: 3 June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima,

September 9, 2002 ( ) [1] K. Hukushima and Y. Iba, cond-mat/ [2] H. Takayama and K. Hukushima, cond-mat/020

スケーリング理論とはなにか? - --尺度を変えて見えること--

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

パーキンソン病治療ガイドライン2002

研修コーナー

tnbp59-21_Web:P2/ky132379509610002944

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ohpr.dvi

研究室ガイダンス(H29)福山研v2.pdf

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

数値計算:フーリエ変換

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

研究室ガイダンス(H28)福山研.pdf

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

nsg02-13/ky045059301600033210

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

TOP URL 1

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence


iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

第90回日本感染症学会学術講演会抄録(I)

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

Ł\”ƒ-2005

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

スライド 1

E-2 A, B, C A, A, B, A, C m-cresol (NEAT) Rh S m-cresol m-cresol m-cresol x x x ,Rh N N N N H H n Polyaniline emeraldine base E-3 II


SUSY DWs

JFE.dvi

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs


* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

GJG160842_O.QXD

untitled

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P


スライド タイトルなし

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

シリコーン・コンシェルジュ No.12

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

SPring-8_seminar_

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

50. (km) A B C C 7 B A 0

Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems

PowerPoint Presentation

note4.dvi

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

eto-vol1.dvi

01-表紙.ai

DaisukeSatow.key

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

hidaka2

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

susy.dvi

H.Haken Synergetics 2nd (1978)

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

untitled

日立金属技報 Vol.34

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

1 2 2 (Dielecrics) Maxwell ( ) D H

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid

Nosé Hoover 1.2 ( 1) (a) (b) 1:

量子力学 問題

( ) () () ( ) () () () ()

( ) I( ) TA: ( M2)

基礎数学I

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

soto44_kosei_03.pdf


aichi_1_24_b


,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

nenmatsu5c19_web.key

1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3

chap9.dvi

「消える」金融、「創る」金融-2010年のリテール金融

第1章 微分方程式と近似解法

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

Transcription:

( ) URL: http://dbs.c.u-tokyo.ac.jp/~fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp December 2, 2003

Today s Contents Summary 2003/12/02 1

Cannella Mydosh(1972) Edwards Anderson(1975): Model Hamiltonian: EA model H( S) = ij J ij S i S j S i : m-component classical spin variable J ij : quenched disorder EA order parameter q µν = 1 mn i S iµ S iν (µ, ν = x, y, z) +? (1980 ) 2003/12/02 2

? Bhatt Young, PRL 54, 924(1985) Ogielski Morgenstein, PRL 54, 928(1985). Ground state calculation (Domain Wall RG) : Banavar-Cieplak, PRL 48, 832 (1982) McMillan, PRB 31, 342(1985). Finite temperature Monte Carlo calculation: Olive-Young-Sherrington, PRB 34, 6341 (1986). Matsubara-Iyota-Inawashiro, PRL 67, 1458 (1991). Yoshino-Takayama, EuroLett 22, 631 (1993). (dynamics) = SG Experimental Spin-Glass Transition (Canonical spin glass: CuMn, AgMn) = isotropic Heisenberg model ) ( 2003/12/02 3

weak anisotropy effects: Olive-Young-Sherrington 86 Ising SG cf. d Ising LCD < 3 Heisenberg to Ising Ising SG ν η Ising SG (EA model) 1.8(2) 0.26(4) Fe 0.5 Mn 0.5 TiO 3 1.7 0.35 Heisenberg SG: CuMn 1.4 0.4 2003/12/02 4

Kawamura, PRL 68 (1992) 3785. STEP 1 STEP 2 broken symmetry preserve Z 2 Z 2 phase CG LRO SG LRO CG phase SG phase paramag. 2003/12/02 5

vs weak anisotropy picture chirality mechanism T/J (a) Paramagnetic phase Ising SG limit T/J (b) Paramagnetic phase T CG (D=0) Ising SG limit ~D 1/4 SG (CG) phase CG phase CG (SG) phase D/J T SG (D=0) D/J 2003/12/02 6

a finite temperature Chiral-Glass transition Kawamura, JPSJ 64, 26 (1995). Kawamura, PRL 80, 5421 (1998). Hukushima-Kawamura, PRE 61, R1008 (2000). Matsumoto-Hukushima-Takayama, PRB66, 104404(2002). Imagawa-Kawamura, PRL87,207203(2001), JPSJ71,127(2002) - 1 step lack of self-averaging... SG vs aging rejuvenation-memory 2003/12/02 7

low temperature Chiral Glass phase (1) Order parameter distributon in the low T phase 0.045 0.04 0.035 0.03 3D Heisenberg SG T/J=0.10 L=16 L=12 L=10 L=8 L=6 3D Ising SG P(q χ ) 0.025 0.02 0.015 0.01 q) P( 0.005 0-0.08-0.06-0.04-0.02 0 0.02 0.04 0.06 0.08 CG oder parameter distribution function q χ SG order parameter q 1 STEP RSB Full STEP RSB A central peak at q χ = 0, in addition to side peakssuggests one step like RSG. 2003/12/02 8

Ising (1) (aging ) Rejuvenation(Chaos)-Memory Effect: K. Jonason et. al. PRL81 (1998) 3243. (AgMn) 1000 Fe 0.5 Mn 0.5 TiO 3 (a) 25 Ag(11 at% Mn) (b) χ (arb. units) 800 600 400 200 χ χ ref 10 0 10 20 30 40 50 0 15 17 19 21 23 25 T (K) χ (arb. units) 20 15 10 5 χ χ ref 1 0 1 2 3 4 0 20 24 28 32 36 T (K) P.E.Jönsson, et al cond-mat/0307640 SG 2003/12/02 9

Ising (2) : R(t, t w ) = X(t,t w) k B T C(t,t w ) t w T eff = T/X, X = 1, T eff = T MC simulation (CuMn) (T/J)χ ZFC (t,tw) (T/J)χ D 10 10 2 10 3 10 4 10 5 (q EA,(T/J)χ EA ) 0.5 0.0 0.2 0.4 0.6 ~ C(t,tw) Correlation C(t',t) T eff 2T g Susceptibility χ(t',t) ~ 1.0 0.9 0.8 0.7 0.6 ~ χ(t',t) 1.0 0.5 0.0 0.0 0.5 1.0 ~ C(t',t) t'=100s t'=200s t'=500s t'=1000s t'=2000s t'=5000s t'=10000s 2003/12/02 10

SG!!...??? Matsubara-Shirakura-Endoh, PRB 64, 09412 (2001). Nakamura-Endoh, JPSJ 71, 2113 (2002). Lee and Young, Phys. Rev. Lett. 90 (2003) 228203 SG 2003/12/02 11

Lee Young s claim: Phys. Rev. Lett. 90 (2003) 228203 Single spin- and chiral-glass transition in vector spin glasses in three dimensions Correlation length : second moment method (L 12) ξ SG (T, L) = 1 2 sin(k min /2) ( χsg (k=0) χ SG (k min ) 1 ) 1/2 SG..., it would be feasible to extend these resutls to larger sizes by a major computational effort. CG 2003/12/02 12

Kawamura-Yonehara, J. Phys. A 36(2003) 10867 10880. Mermin- Scaled SG correlation length ξ SG /L ξ L < 20 $&%(' $&%*) $,+,' $,-,' $/.0' ξ! #" 2003/12/02 13

SG ξ/l SG L=20 16 12 8 CG L=20 16 12 8 ξ SG /L ξ CG /L T/J T/J correction to scaling T CG > T SG L 16 2003/12/02 14

(1) q (2) SG (L) = 2 4 * X µν 1 N X i! 2 +3 S (α) 5 iµ S(β) iν 2 CG 64 (L) = q (2) *0 @ 1 3N X iµ χ (α) iµ χ(β) iµ 1 A 2+3 7 5 10 1 2) SG q ( 10 1 T/J=0.22 T/J=0.20 T/J=0.19 T/J=0.18 T/J=0.17 T/J=0.15 L 2) CG q~( 10 2 10 3 T/J=0.22 T/J=0.20 T/J=0.19 T/J=0.18 T/J=0.17 T/J=0.15 T = T CG T CG /J 0.19 q (2) SG q (2) CG L 2003/12/02 15

Spin-glass order parameter distribution function (diagonal part) diagonal compornent of the overlap q 1 N X (S (α) ix S(β) ix +S(α) iy S(β) iy +S(α) iz S(β) iz ) i P (q diag ) = δ(q q diag distribution function randomly frozen order Long range part q EA + trivial rotation O(3) diverging peak at ± 1 3 q EA Heisenberg SK model (Imagawa-Kawamura) Our result in 3D HSG diag) P(q T/J = 0.15 < T CG q diag Only single peak!! no SG ordering 2003/12/02 16

Summary SG T CG > T SG FDT context 2003/12/02 17