[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

Similar documents
TOP URL 1

TOP URL 1

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

TOP URL 1

SO(2)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

TOP URL 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

201711grade1ouyou.pdf

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

量子力学 問題

all.dvi

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


0406_total.pdf

Einstein ( ) YITP

( )

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

70 : 20 : A B (20 ) (30 ) 50 1

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

第86回日本感染症学会総会学術集会後抄録(I)

Mott散乱によるParity対称性の破れを検証

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

I

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

基礎数学I

Z: Q: R: C: sin 6 5 ζ a, b

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

構造と連続体の力学基礎

『共形場理論』

プログラム

(Onsager )

抄録/抄録1    (1)V

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

数学の基礎訓練I

Note.tex 2008/09/19( )

koji07-01.dvi

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

YITP50.dvi

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =


9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

四変数基本対称式の解放

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

( ) ( )

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB

untitled

1

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

tnbp59-21_Web:P2/ky132379509610002944

05Mar2001_tune.dvi

meiji_resume_1.PDF

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

December 28, 2018

SUSY DWs

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

(Maldacena) ads/cft

パーキンソン病治療ガイドライン2002

研修コーナー

: , 2.0, 3.0, 2.0, (%) ( 2.



kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

êUìÆã§ñ¬ÅEÉtÉFÉãÉ~ã§ñ¬.pdf

/02/18

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

( ) (ver )

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

nsg02-13/ky045059301600033210

Transcription:

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν } = 2η µν 1. (1) η µν 1 (µ = ν = 1, 2,, t), η µν = +1 (µ = ν = t + 1,, D), 0 (µ ν). t, s := D t (Γ µ ) 2 = 1, (µ = 1,, t), (Γ µ ) 2 = +1, (µ = t + 1,, D), Γ µ Γ ν = Γ ν Γ µ, µ ν Clifford 1

Clifford so(t, s) Clifford so(t, s) Γ µ Clifford 1 J µν J µν := 1 2 Γµν Γ µ 1µ 2...µ r := Γ [µ 1 Γ µ2 Γ µ r ] J µν [J µν, J ρσ ] = η νρ J µσ + η µσ J νρ η µρ J νσ η νσ J µρ so(t, s) 2 exp Spin(t, s) Clifford Γ µ U Γ µ := U Γ µ U 1 (1) Clifford Γ µ Γ µ 2 Euclid Clifford Euclid η µν = δ µν Clifford {Γ µ, Γ ν } = 2δ µν 1 (2) Euclid Clifford 2.1 D = 2n b 1 := 1 2 (Γ1 + iγ 2 ), b 1 := 1 2 (Γ1 iγ 2 ), (3) b n := 1 2 (Γ2n 1 + iγ 2n ), b n := 1 2 (Γ2n 1 iγ 2n ). 1 2 2

(3) {b A,b B } = δ AB, {b A,b B } = {b A,b B } = 0 + + + b A + + + = 0, A = 1,, n b 1 b 2 b 1 + + + =: + +, + + + =: + +, + =: + b 1 b 2 = b 2 b 1 b 2 + = + 2 n ± ± ± 2 n [1] Clifford 3 2 b 1 + = 0, b 1 + =:, b 1 = 0, b 1 = b 1 b 1 + = (1 b 1 b 1) + = + 3 Clifford Spin(2n) Clifford 3

+ = ( 1 0), = ( 0 1) b 1 = 0 0, b 1 = 0 1 1 0 0 0 2n Γ 1 = b 1 + b 1 = 0 1 =: σ 1, Γ 2 = 1 1 0 i (b 1 b 1 ) = 0 i =: σ 2 i 0 Γ 1 = σ 1 1 1, Γ 2 = σ 2 1 1, Γ 3 = σ 3 σ 1 1, Γ 4 = σ 3 σ 2 1, (4) 2.1.1 C Γ µ Clifford (Γ µ ) T Γ µ Clifford C η, η = ±1 C η C η Γ µ C 1 η = η Γ µt, C η C η = 1. (5) C + = σ 1 σ 2 σ 1, C = σ 2 σ 1 σ 2. (6) C A C ϵ (6) C T η = ϵ C η 4

n mod 4 1 2 3 4 ϵ when η = + + + ϵ when η = + + ϵ = ( 1) [n/2] η n [ ] Gauss 2.2 D = 2n + 1 D = 2n + 1 Γ 1 Γ 2n D = 2n Γ 2n+1 Γ 2n+1 = ( i) n Γ 1 Γ 2 Γ 2n (7) Clifford (2) Clifford (7) Γ 2n+1 Γ 2n+1 = ( i) n Γ 1 Γ 2 Γ 2n (8) (7) (8) Γ µ U Γ µ U 1 Clifford Γ µ Γ µ Γ µt Γ µ Γ µ η = ± ξ CΓ 2n+1 C 1 = ξ (Γ 2n+1 ) T ξ (7) C,C 1 CΓ 2n+1 C 1 = ( i) n CΓ 1 C 1 CΓ 2 C 1 CΓ 2n C 1 = ( i) n (Γ 1 ) T (Γ 2 ) T (Γ 2n ) T = ( i) n (Γ 2n Γ 1 ) T = ( 1) n ( i) n (Γ 1 Γ 2n ) T = ( 1) n (Γ 2n+1 ) T 5

ξ = ( 1) n C C ξ 2.3 Clifford Clifford D = 2n D = 2n + 1 D = 2n + 1 Γ µ Γ 1 Γ 2n+1 = ±i n C CΓ µ C 1 = η (Γ µ ) T, C C = 1 D = 2n D = 2n + 1 ξ = ( 1) n η η = ξ C C T = ϵ C ϵ D mod 8 D mod 8 1 2 3 4 5 6 7 8 ξ + + + + η + + + + + + ϵ + + + + + + 1 3 Euclid Spin 3.1 Dirac Weyl D = 2n Γ µ Clifford J µν = 1 2 Γµν so(2n) ψ Dirac (7) Γ 2n+1 6

[Γ 2n+1, J µν ] = 0 Γ 2n+1 Γ 2n+1 ψ = ±ψ so(2n) so(2n) Weyl Γ 2n+1 chirality D = 2n + 1 Clifford so(2n + 1) Dirac D = 2n + 1 Clifford so(2n + 1) 3.2 D = 2n D = 2n + 1 C C ψ Dirac ψ c ψ c = C 1 ψ (9) ψ c Dirac so(d) (J µν ψ ) c = J µν ψ c (5) Γ µ (ψ c ) c = (C 1 ψ ) c = C 1 C 1 ψ = ϵ C 1 C 1 ψ = ϵ ψ ϵ = +1 Dirac ψ c = ψ Majorana C χ,ψ Dirac C αβ χ α ψ β = χ T Cψ = χ c ψ so(d) 7

Majorana ϵ = +1 Dirac C = 1 A.3 Γ µ ϵ = 1 Dirac Dirac ϵ Dirac Weyl 3.3 Weyl D = 2n ψ Γ 2n+1 ψ = aψ, a = ± Weyl (9) ψ c Γ 2n+1 Γ 2n+1 ψ c = C 1 CΓ 2n+1 C 1 ψ = C 1 ξ Γ 2n+1 ψ = ξ ac 1 ψ = ξ aψ c ψ c chirality ξ a ξ = 1 D = 4l + 2 ψ ψ c Weyl ξ = +1 D = 4l ψ ψ c D = 4l ϵ = +1 C 1 D = 8k ϵ = +1 Weyl C = 1 Γ µ Γ 2n+1 Weyl ψ c = ψ Majorana-Weyl D = 8k + 4 ϵ = 1 Weyl 3.4 Spin(D) 2 4 Euclid Pin + Clifford Pin + (D) Pin + (D) O(D) Spin(D) + R R 2 = 1 8

D mod 8 1 2 3 4 5 6 7 8 ξ + + + + η + + + + + + ϵ + + + + + + M M,W W M,W M M,W,MW C, R, PR R C PR PR PR C R R 2 Spin(D) M: Majorana, W: Weyl, MW: Majorana-Weyl C, R, PR Spin(D) Dirac, Weyl C: R: PR: Clifford Spin(D) exp ( θ µν Γ µν ) µ Γ µ 4.1 D = 2n chirality Dirac Clifford Pin + (2n) Pin + (2n) Γ µ C = C + Pin + (2n) д CдC 1 = д ϵ = + ϵ = 4.2 D = 2n + 1 Dirac Clifford Pin + (2n + 1) CΓ µ C 1 = ξ Γ µ ξ = 1 D = 4l + 3 ξ = +1 D = 4l + 1 ϵ = +1 ϵ = 1 4.3 Pin + (D) Pin + (D) C η = +1 9

D mod 8 1 2 3 4 5 6 7 8 ξ + + + + ϵ + + + + C, R, PR R R C PR PR PR C R 3 Pin + (D) η = +1 5 Clifford Spin Γ µ E, µ = 1,, 2n (4) Euclid Clifford D = 2n + 1 (7) (8) Γ 2n+1 E Γ µ {Γ µ E, Γν E } = 2δ µν 1 Γ µ iγ µ E, µ = 1,, t, := Γ µ E, µ = t + 1,, D, (1) Clifford C (6) C η i CΓ µ C 1 = η (Γ µ ) T η = ξ 5.1 Dirac ψ Dirac ψ Dirac ψ ψ := ψ Γ 1 Γ t 10

Spin(t, s) д ψ дψ ψ ψд 1 ψ, χ Dirac ψ χ Spin(t, s) 5.2 B Dirac ψ ψ c ψ c := C 1 ψ T ψ c Dirac B B B 1 = C 1 (Γ 1 Γ t ) T (10) ψ c := B 1 ψ B BΓ µ B 1 = ηγ µ, B T = ϵb. (11) ξ = ( 1) [ s t 2 ], ϵ = ( 1) [ s t 4 ] η [ s t 2 ] (12) η = ( 1) t η ± η = ξ B Euclid C, η, ξ, ϵ B, η, ξ, ϵ Dirac ψ (ψ c ) c = (B 1 ψ ) c = B 1 B 1 ψ = ϵb 1 B 1 ψ = ϵψ ϵ = 1 ψ c = ψ Majorana B = 1 D = 2n Weyl chirality Γ 2n+1 = ( i) n t Γ 1 Γ 2n s 2n + 1 Γ 2n+1 BΓ 2n+1 B 1 = ξ Γ 2n+1 11

ΓE 2n+1 ψ = aψ, a = ± Γ 2n+1 ψ c = B 1 BΓ 2n+1 E B 1 ψ = ξb 1 Γ 2n+1 ψ = ξab 1 ψ = ξaψ c ξ = 1 ξ = +1 ξ = +1 ϵ = +1 Majorana-Weyl Spin(s, t) B B Majorana(-Weyl) ψ c = ψ B = 1 B C 4 (s t) mod 8 1 2 3 4 5 6 7 8 ξ + + + + η + + + + + + ϵ + + + + + + M M,W W M,W M M,W,MW C, R, PR R C PR PR PR C R R E 4 Spin(s, t) A A.1 C U Γ µ Clifford Γ µ Γ µ = U Γ µ U 1 (13) Γ µ Clifford C 1 12

1 ϵ (5) C CΓ µ C 1 = η Γ µt (13) U T CU Γ µ U 1 CU 1T = η Γ µt C := U T CU (14) C Γ µ C 1 = η Γ µt C Γ µ C (14) C C C T = (U T CU ) T = U T C T U = ϵ U T CU = ϵ C C ϵ B C ϵ A.2 C C Clifford C 2 η C C CΓ µ C 1 = η(γ µ ) T, C Γ µ C 1 = η(γ µ ) T (15) a C = ac V V := C 1 C (15) V Γ µ V 1 = C 1 CΓ µ C 1 C = ηc 1 (Γ µ ) T C = Γ µ 13

V Γ µ Schur 4 V V = a1, (a ) C = ac C C a = 1 a A.3 C C = 1 [3] 3 C N N C = U T U U C A, B C = A + ib C 1 = C C = (A ib)(a + ib) = A 2 + B 2 + i(ab BA) [A, B] = 0, A 2 + B 2 = 1 (16) A B O a 1 A = O T a 2 a N b 1 O, B = O T b 2 b N O (16) a 2 i + b 2 i = 1 θ i 4 Schur Clifford Clifford Pin + Schur 14

a i = cos θ i, b i = sin θ i a 1 + ib 1 C = A + ib = O T a 2 + ib 2 a 1 + ib 1 = O T a 2 + ib 2 = O T e iθ 1/2 e iθ 2/2 e iθ N /2 O a N + ib N O = O T a N + ib N e iθ 1/2 e iθ 2/2 e iθ 1 e iθ 2 e iθ N /2 O e iθ N O U = e iθ 1/2 e iθ 2/2 e iθ N /2 O C = U T U A.4 C C (2K) (2K) Ω 0 1 1 0 Ω = 0 1 1 0 0 1 1 0 15

4 C (2K) (2K) C = U T ΩU 5 A N N O 0 a 1 a 1 0 A = O T 0 a 2 a 2 0 0 a K a K 0 0 O 0 A.5 5 A 2 v j c 2 j, c j 0 A 2 v i = c j 2 v i c j u 1,,u N a 1, a 2,, a K, K N /2 c 1 = 0 Av 1 = 0 Av 1 Av 1 2 = v T 1 AT Av 1 = v T 1 A2 v 1 = 0 c j c 1 c j 0 Av j = 0 u j = v j 16

c 1 > 0 u 1 := v 1 u 2 = Au 1 /c 1 A 2 u 2 = c 2 1 u 2, u 2 u 1 = 0, u 2 2 = 1 u 1,u 2 a 1 = c 1 Au 1 = a 1 u 2, Au 2 = a 1 u 1 A(u 1 u 2 ) = (u 1 u 2 ) 0 a 1 a 1 0 u 1,u 2 A 2 A 2 v 3,,v N u 1,u 2 c 2 j v 3 c 3 = 0 u j = v j c 3 > 0 u 3 = v 3, u 4 = Av 3 /c 3, a 2 = c 3 0 a 1 a A(u 1 u 2 u 3 u 4 ) = (u 1 u 2 u 3 u 4 ) 1 0 0 a 2 a 2 0 u 1,,u N a 1, a 2,, a K 0 a 1 a 1 0 A(u 1 u 2 u N ) = (u 1 u 2 u N ) 0 a 2 a 2 0 0 a K a K 0 0. 0 O = (u 1 u 2 u N ) T 5 17

B (11), (12) (10) B = (Γ 1 Γ t ) 1T C = ( 1) t (Γ 1 ) T (Γ t ) T C = ( 1) t η t CΓ 1 Γ t =: bcγ 1 Γ t b (11) m B.1 D = 2n µ = 1,, t ( 1) m = ( 1) m, ( 1) m(m 1)/2 = ( 1) [ m 2 ] BΓ µ B 1 = CΓ 1 Γ t Γ µ (Γ t ) 1 (Γ 1 ) 1 C 1 = ( 1) t 1 CΓ µ C 1 = ( 1) t 1 η (Γ µ ) T = ( 1) t η Γ µ Γ µ µ = t + 1,, D BΓ µ B 1 = ( 1) t η Γ µ η = ( 1) t η (11) B T = b(cγ 1 Γ t ) T = b(γ t ) T (Γ 1 ) T C T = ϵ b(γ t ) T (Γ 1 ) T C = ϵ η t bcγ t Γ 1 = ϵ η t ( 1) t(t 1)/2 bcγ 1 Γ t = ϵ η t ( 1) t(t 1)/2 B ϵ = ϵ η t ( 1) t(t 1)/2 = ( 1) n(n 1)/2 η n η t ( 1) t(t 1)/2 = ( 1) n(n 1)/2 t(n+t) t(t 1)/2 η n t ( 1) n(n 1)/2 t(n+t)+t(t 1)/2 = ( 1) 1 2 (n t)(n t 1) = ( 1) [ s t 4 ] ϵ = ( 1) [ s t 4 ] η [ s t 2 ] (11) (12) 18

B.2 D = 2n + 1 s = 0 B = (phase)c η = η, ξ = ξ, ϵ = ϵ (11)(12) s 1 Γ 2n+1 BΓ 2n+1 B 1 = ξ Γ 2n+1 ξ BΓ 2n+1 B 1 CΓ 1 Γ t Γ 2n+1 (Γ t ) 1 (Γ t ) 1 C 1 = ( 1) t CΓ 2n+1 C 1 = ( 1) t ( 1) n Γ 2n+1 ξ = ( 1) n t = ( 1) [n t+ 1 2] = ( 1) [ s 1+t 2 t+ 1 2] = ( 1) [ s t 2 ] (11) η = ξ ϵ s = s 1 s t 4 ϵ = ( 1) (11) (12) [ ] s t [ ] s t 4 η 2 = ( 1) [ s t 4 ] η [ s t 2 ] [1], Web. [2] J. Polchinski, String Theory vol. 2 Appendix. [3] B. Zumino, Normal Forms of Complex Matrices. J. Math. Phys. 3(1962)1055 1057 19