Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

Similar documents
Note5.dvi

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

QMI_09.dvi

QMI_10.dvi

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

IA


eto-vol2.prepri.dvi

all.dvi

Gmech08.dvi

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d



1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

30

eto-vol1.dvi

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

note4.dvi

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx


I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Gmech08.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

all.dvi


Nosé Hoover 1.2 ( 1) (a) (b) 1:


50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

量子力学 問題

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

B ver B

i

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

K E N Z OU


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n


201711grade1ouyou.pdf

19 /

QMII_10.dvi

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

2000年度『数学展望 I』講義録

TOP URL 1

: , 2.0, 3.0, 2.0, (%) ( 2.

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

0406_total.pdf

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

Part () () Γ Part ,

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

sec13.dvi

Untitled

Gmech08.dvi


QMI_10.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2


C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

I ( ) 2019

Xray.dvi

構造と連続体の力学基礎

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )


notekiso1_09.dvi

Transcription:

1 13 6 8 3.6.3 - Aharonov-BohmAB) S 1/ 1/ S t = 1/ 1/ 1/ 1/, 1.1) 1/ 1/ *1 AB ) e iθ AB S AB = e iθ, AB θ π ϕ = e ϕ ϕ ) ϕ 1.) S S ) e iθ S w = e iθ 1.3) θ θ AB??) S t = 4 sin θ 1 + e iθ AB e iθ AB + e iθ 3e iθ ) 1.4) [1]??) )T = t ϕ 1.1b) ϕ AB θ π t ϕ = S 1.) Onsager 1.4) ϕ θ π ϕ / θ ϕ π AB phase rigidity) [] AB AB * *1 * [3] Onsager 1-1

a 1 =1 b 1 S t b a b 3 S AB S w a 4 b 4 a 5 S t b 6 a 6 = a) a 3 b 5 c) / 1.8. 1.6 / 1. t b) d) =.4 / 1 1.1 a)ab S b) 1.4) AB t θ ) ϕ/ϕ c)b) d) ϕ/ϕ ϕ AB θ = 1.6 π Ch. 5 Hall Hall 1979 von Klitzing σ xy von Klitzing Hall 6 7 QHE von Klitzing Fractional Quantum Hall Effect, FQHE) [6] 1-

) 1 DEG Intger Quantum Hall Effect, IQHE) 1.1 Shubnikov-de Haas DEG - Shubnikov-de Haas oscillation, SdH ) DEG 1. 5 Resistivity Ohm /sq.) 4 3 1 DEG 45mK 4.1. B T) - -4-6.1. BT) 1. DEG SdH ρ ρ av)/b 5 Resisitivity Ohm/sq.) 4 3 1 DEG 45mK 4 5 6 7 8 9 1 1/B 1/T) 1.3 1. SdH 1/B 1-3

1.3.8 DEG 5mK ν=1 R Hall h/e ).6.4 ν= 3 5. 4 6 4 6 8 1 B T) R xx h/e )..1 1.4 ν = 1 SdH 1.3 1/B) 1/B SdH 1. SdH R xy = R H SdH SdH R Hp n) = R q n n ) 1.5) n 1.5) R q /n R xx IQHE 1.4 IQHE R H h/e 6 7-3 ) -3 1.5 IQHE h/e 7 h/e 1 Klizting : ) ) e ) Zeeman ) 1-4

.8.8 NIST.84 RK 581 ).86.88.81.81.814 CSIRO/G.U. CSIRO/BIPM NIST Muhfs) NIM IMS/IMM NIST LCIE NPL CSIRO ETL...4.6 6 [R /581.8 1]x1 K 1.5 IQHE h/e σ 1 1 R K Klitzing).1 B Lorentz ev B m r = ev B 1.6) Lagrangian A L = m v ea v 1.7) canonical momentum)p c p c = L ṙ = mv ea 1.8), guiding center) R = X, Y ) r = R + r cosω c t), sinω c t)) 1.9) ω c eb m, r v ω c 1.1) R E 1.6) Lorentz ee + v B) E / B. Ehrenfest ) 1-5

H = m v = p c + ea) m π m = π x + π y m, 1.11) π p c + ea 1.1) dynamical momentum) π π x π y [π α, β] = i δ αβ, α, β = x, y 1.13) l magnetic length) [π x, π y ] = i l 1.14) l eb 1.15) X, Y ) ˆR ˆr ˆr = ˆR + l π y, π x ) 1.16) ˆR 1.9) 1.9) v π x π y [X, Y ] = il 1.17) Hamiltonian X, Y ) X, Y ) 1.17) X Y r, p c ) R π 1.14) 1.17) x y ) 1.11) π Ur) H = H + Ur) ˆR Heisenberg Ẋ = i [H, X] = i Ẏ = i [H, Y ] = i [ ] Ur), x + l π y = l U y, [ ] Ur), y l π x = l U x 1.18a) 1.18b) x Ur) = eex, ) Ẏ = l / )ee = E/B y E/B 1-6

.3 1.11) π *3 a = l π x iπ y ), a = l π x + iπ y ) 1.19) [a, a ] = 1 1.) H = ω c a a + 1 ) 1.1) 1.19) E n = ω c n + 1 ) n =, 1,, ) 1.) Landau) πr AB π r k B πr e ) 1 k = π h ω c m 1 mv ) ω c = π k ω c m n n + 1)π 1.3) k m = E k = ω c n + 1) 1.4) 1.) ω c /.4 R 1.11) 1.) R R R X Y 1.) X Y X, Y ) X, Y ) X, Y ) ) q ) X, Y ) ξ ξ *3 π x π y p /m + mω x / 1-7

a Schrödinger X Y.4.1 A =, Bx, ) Schrödinger [ 1 m = 1 m i x + y ) ] + ebx ψr) [ i ebx y + e B x ] ψr) = Eψr) 1.5) y / y ) y ψr) = ux) expiky) expiky) [ d m dx + eb) m x + ) ] eb k ux) = [ m d dx + mω c ] x + l k) ux) = Eux) 1.6) x = l k ) x xk ψ Nk r) H N exp x x k) ) l l expiky) x k l k) 1.7) H N N Hermite X = x k = l k = l p y / X y X Y X Y 1.7) y ) y X y E/ k = X/ k X y.4. A = By/, Bx/, ) r, φ, z) A = A φ, A r, A z ) = Br/,, ) Schrödinger 1 [ m r + 1 r r + 1 ) r φ i eb φ + e B r ] ψr, φ) = Eψr, φ). 1.8) 4 φ ψr, φ) = vr) expim j φ) φ [ m d dr + 1 r ) ] d + m j dr mr + 1 8 mω c r + m j ω c vr) = Evr). 1.9) 1-8

L E Nmj = ω c N + m j + m j + 1 ), 1.3) ψr, φ) = 1 expim j φ)v Nmj r), v Nmj r) = 1 l N! N m j )! exp r 4l ) ) mj ) r L m j r 1.31) N l l m j ) R X + Y ) X = x + π y, Y = y π x, mω c mω [ ] c X + Y = 1 π x + πy + yp x xp y ) mω c mω c = l n m j + 1/). = l [ l π + yp ] x xp y 1.3) X + Y X + Y > m j n [1] Y. Gefen, Y. Imry, and M. Ya. Azbel, Phys. Rev. Lett. 5, 19 1984). [] A. Yacoby, R. Schuster, and M. Heiblum, Phys. Rev. B 53, 9583 1996). [3] A. Aharony, O. Entin-Wohlman, T. Otsuka, H. Aikawa, S. Katsumoto and K. Kobayashi, Phys. Rev. B 73, 19539 6). [4] K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45, 494 198). [5] S. Kawaji and J. Wakabayashi, in Physics in High Magnetic Fields, eds. S. Chikazumi and N. Miura Springer, Berlin 1981). [6] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 45 198). [7], 1995) [8], 1998). [9] http://www-lab.imr.tohoku.ac.jp/~nomura/note_nomura.pdf L r, φ) r, φ) [ m r + 1 r r + 1 ) r φ + mω ] r ψ = Eψ. r φ L.1) ψr, φ) = ζr)ϕφ). L.) 1-9

φ ψ χ = expilφ) L.) L.1) ζ [ d m dr + 1 ) d r dr l r + mω ] r ζr) = Eζr) L.3) l l l l ζ *4 r ρ mω/ r *5 fρ) ζ = ρ l e ρ / fρ). L.4) e ρ /??) ρ ρ l ρ L.3) f d ) f l + 1 df dρ + ρ + λ l 1)f = ρ dρ L.5) E = ωλ s = ρ s d f df + l + 1 s) ds ds + 1 λ 1 l)f = L.6) s λ 1 l = n r n r =, 1,, ) L.7) n r Laguerre) L l n r+l s) E = ωλ = ωl + n r + 1) L.8) l + n r = n t ω *6 ψ nr,lr, φ) e ilφ r l e mω/ )r L l n r +l mω r). L.9) *4 *5 ω/ ) *6 ) 1-1