mt_4.dvi

Similar documents
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

untitled

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Chap10.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

pdf

Note.tex 2008/09/19( )

LLG-R8.Nisus.pdf

mugensho.dvi

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Gmech08.dvi

I

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

数学の基礎訓練I

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

Gmech08.dvi

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =


8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

TOP URL 1

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,


2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

数値計算:常微分方程式

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

5. 5.1,, V, ,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 3-1, 2-2, 1-3,,, L1, L3, L2, ,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

untitled

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

28 Horizontal angle correction using straight line detection in an equirectangular image

The Physics of Atmospheres CAPTER :

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π


zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

橡博論表紙.PDF

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

function2.pdf

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

untitled

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y


( ) ( )

NETES No.CG V

sec13.dvi

untitled

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t


c 2006 Yoneda norimasa All rights reserved

i

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

A

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

C:/KENAR/0p1.dvi

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

曲面のパラメタ表示と接線ベクトル

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

1

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

熊本県数学問題正解

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

QMI_09.dvi

QMI_10.dvi

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

Transcription:

( ) 2006 1

PI

1 1 1.1................................. 1 1.2................................... 1 2 2 2.1...................................... 2 2.1.1.......................... 2 2.1.2.............................. 2 2.2...................................... 2 3 5 3.1................................. 5 3.2................................. 5 3.3................................. 5 3.4.................................. 5 3.5.............................. 6 3.6.................................... 6 3.7................................... 6 4 8 4.1...................................... 8 4.2...................................... 8 4.3.................................. 9 4.4.................................. 10 4.5....................... 10 4.6.............................. 12 4.7................................. 12 4.8.............................. 12 4.9........................... 14 5 16 5.1.............................. 16 5.2.................................. 16 i

5.3.................................. 18 5.4............................ 18 5.5 PI............................... 18 5.6...................................... 19 5.7.................................... 22 5.7.1.............................. 22 5.7.2................. 24 5.7.3................... 25 5.8.................................... 26 5.9............................. 29 5.10................................. 29 5.11............................. 29 6 33 6.1...................................... 33 6.1.1............................... 33 6.1.2............................... 33 6.2................................... 34 6.3........................ 34 6.3.1 URG............................. 34 6.3.2........................ 36 6.4................................... 37 6.4.1 USB................................ 37 6.4.2........................ 38 6.4.3......................... 38 6.4.4............................... 39 6.5................................... 39 6.5.1............................. 39 6.5.2............................. 43 6.6.............................. 43 7 45 46 47 ii

2.1 L B 3 2.2.................................. 3 2.3............................ 4 3.1.................................. 7 4.1.................................. 9 4.2 RSR 9N RSR 12N RSR 15N........... 10 4.3............................... 11 4.4 M-1........................ 13 4.5............................. 14 4.6............................ 15 5.1.............................. 17 5.2................................. 17 5.3 PI ( ). 20 5.4 PI........ 22 5.5 PI PI ( PWM ).............................. 23 5.6............. 25 5.7................................. 27 5.8 ( ) ( )...... 28 5.9 ( ) ( ).................. 30 5.10................................. 31 6.1............................... 33 6.2............................... 35 6.3 URG................................. 36 6.4 USB QV-700N............................... 38 6.5 ( ) ( )..... 39 6.6.............................. 40 6.7.................... 41 6.8 URG........................ 42 iii

6.9............................. 44 iv

1 1.1 [1][2][3] [4][5][6] 1.2 7 2 3 2 4 5 6 7 1

2 2.1 2.1.1 2.1 [7] 2.1.2 2.2 2.2 2.3 2

[a] [b] 147cm 137cm 2.1: L B 15mm 20mm 130cm 2.2: 3

88cm 2.3: 4

3 3.1 M-1 1 3.2 40cm 3.3 ( 2.3) 88cm ( 2.2) 130cm ( 2.1) 110 150cm 150cm 3.4 1 1996 370mm 322mm 420mm 5

2 6 4 3 3.5 3.1 500gf 500gf 3.1: 300 500gf 300 400gf 300gf 3.6 2.2 15mm 20mm 5mm 3.7 [8] [9][10][11] 6

End-effector Arm 3.1: 3.1 1 1 7

4 4.1 4.2 4.1 40cm 110cm 40cm 4 1 2 3 4 1. 1 4.1 [a] 4.1 [b] 2. 1 2 2 1 1 2 2 4.1 [c] 2 1 4.1 [d] 3. 3 4 2 1 2 3 4 1 ( L 1 ) 2 n l l = L 1 +3n (4.1) 8

Belt-holder grasping Timing-belt on First stage Belt-holder grasping Timing-belt on Third stage [d] Belt-holder grasping Timing-belt on Third stage [a] [b] motor [c] Belt-holder grasping Timing-belt on Second stage (1) (2) (3) 4.1: 4.3 1 3 1-2 2-3 3-4 4 1kgf 4.1 4.1: 1-2 2-3 3-4 17.9Nm 11.0Nm 5.4Nm 4.2 (THK ) 4.2 9

4.2: 1 2 3 RSR 15N RSR 12N RSR 9N 63.1Nm 28.9Nm 18.4Nm 350mm 370mm 375mm 417g 270g 147g 4.2: RSR 9N RSR 12N RSR 15N 4.4 ( ) 4 2.0mm ( ) 4.5 4.3 4.3 τ 1,τ 2 4 1 l ng (n =1, 2) 2 0.5kg τ n (n =1, 2) τ g 10

l1g l1 l l2 l2g Robot τ1 τ2 M1 Mj2 M2 4.3: 4.3: 1 1100mm(l 1 ) 1.5kg(M 1 ) 2-0.3kg(M j2 ) 2+ (0.5kg) 100mm(l 2 ) 0.7kg(M 2 ) τ w τ n = τ ng + τ nw (n =1, 2) (4.2) τ ng (n =1, 2) τ 1g = {M 1 l 1g + M j2 l 1 + M 2 (l 1 + l 2g )} g (4.3) τ 2g = M 2 l 2g g (4.4) τ nw (n =1, 2) τ nw = I n ω n (n =1, 2) (4.5) I n (n =1, 2) I 1 4.3 2 1 l1 M l1 1 I 1 = x 2 +l 2 M 2 dx + x 2 dx + M j2 l1 2 (4.6) 0 l 1 l 1 l 2 l2 M 2 I 2 = x 2 dx (4.7) l 2 0 τ 1 =21.9Nm, τ 2 =1.96Nm 0.5m/sec 2 1.424kg 0.37Nm 11

4.6 4.4 Maxon 4.4: 1 24V20W 300 28.8Nm 2 24V2.5W 400 2.27Nm 24V20W 19 0.44Nm 4.7 4.8 4.4 M-1 4.5 4.5 4.6 M-1 160cm 12

4.4: M-1 4.5: 388mm 1218mm 225deg 270deg DC 3 25cm/sec 500g 2.8kg 13

4.5: 4.9 14

4.6: 15

5 5.1 5.1 PWM 8 3 5.2 5.2 x : x y : y z : z x v : x y v : y L 0 : L h : L 1 : L 2 : θ a : θ b : θ 1 : θ 2 : θ v : 16

5.1: Z Y θ 1 L 0 (x v, y v ) L h L 1 θ b θ 2 L 2 (x,y,z) θ a, θ v X 5.2: 17

5.3 (x, y, z) (θ a,θ b ) (θ 1,θ 2 ) (L 1 ) (x v,y v,θ v ) x = x v + {L 0 L 1 cos θ 1 + L 2 cos (θ 1 + θ 2 )} cos θ v (5.1) y = y v + {L 0 L 1 cos θ 1 + L 2 cos (θ 1 + θ 2 )} sin θ v (5.2) z = L h + L 1 sin θ 1 + L 2 sin (θ 1 + θ 2 ) (5.3) θ a = θ v (5.4) θ b = θ 1 + θ 2 π (5.5) 5.4 (x, z, θ b ) (θ 1,θ 2 ) (L 1 ) θ 1 = arctan x + L 2 cos θ b + π (5.6) z L 2 sin θ b 2 θ 2 = θ b arctan x + L 2 cos θ b + π (5.7) z L 2 sin θ b 2 L 1 = (x + L 2 cos θ b ) 2 +(z L 2 sin θ b ) 2 (5.8) 5.5 PI PI [12] PI ) ( ) τ ref = K P (θ ref θ + K I θ ref θ dt (5.9) τ ref : [Nm] θ ref : [deg] 18

θ : [deg] K P : K I : PWM 0 PWM PWM δ = 1 V 0 ( R τ ref K τ + K e ω ) (5.10) δ : PWM /255 V 0 : [V ] R : [Ω] τ ref : [Nm] K τ : [Nm/A] K e : [V/rpm] ω : [rpm] PWM PI 5.3 5 200 100 50 0 5 800mm 400mm 200mm 0mm 5.6 19

200 Reference angle Actual angle 150 angle [deg] 100 50 0 0 5 10 15 20 time [sec] 800 700 Reference length Actual length length [mm] 600 500 400 300 200 100 0 0 5 10 15 20 time [sec] 200 Reference angle Actual angle 150 angle [deg] 100 50 0 0 5 10 15 20 time [sec] 5.3: PI ( ) 20

5.4 θ 1 l 1 τ ref θ 1 = K Pθ1 ( θ ref 1 θ 1 ) + K Iθ1 ( θ ref 1 θ 1 ) dt + mg l 1 2 cos θ 1 (5.11) τ ref θ 1 : [Nm] θ ref 1 : [deg] θ 1 : [deg] K Pθ1 : K Iθ1 : m : [kg] g : [m/sec 2 ] l 1 : [m] θ 1 τ ref l 1 = K Pl1 ( l ref 1 l 1 ) + K Il1 ( l ref 1 l 1 ) dt + mg sin θ 1 (5.12) τ ref l 1 : [Nm] l ref 1 : [mm] l 1 : [mm] K Pl1 : K Il1 : PI 5.5 PWM 21

5.4: PI 5.5 20 5.5 PI I PI 5.5 PWM 5.7 5.7.1 (x, z, θ b ) PI (θ b ) (x, z, θ b ) 60mm 22

l 1 [mm] 800 600 400 200 0 0 5 10 15 20 25 30 35 40 45 time [sec] θ 1 [deg] 7.5 7.0 6.5 6.0 5.5 without gravity compensation with gravity compensation 5.0 4.5 4.0 3.5 3.0 0 5 10 15 20 25 30 35 40 45 time [sec] PWM duty [y/255] 40 without gravity compensation 30 20 with gravity compensation 10 0 0 5 10 15 20 25 30 35 40 45 time [sec] 5.5: PI PI ( PWM ) 23

(x, z, θ b ) (θ 1,θ 2,l) 5.7.2 W t [Nm] v t 5.13 W a [Nm] v a 5.14 v t = W tl 3 3EI v a = W al 4 8EI (5.13) (5.14) l : [m] E : [Pa] I : 10mm - 5.6 θ 1 l 1 x y x 10cm f(x, y) =e x2 +y 2 5.15 (a,b,c,d) f(θ 1,l 1 )=ae b((θ 1 c) 2 +(l 1 d) 2 ) (5.15) 24

a*exp(b*((x-c)*(x-c)+(y-d)*(y-d))) gaps caused by deflection gap [mm] 80 70 60 50 40 30 20 10-10 0 θ 1 [deg] 220 200 180 160 140 800 l 1 [mm] 700 600 500 400 300 200 100 0 120 100 5.6: 5.6 a =70, b = 0.00035, c = 173, d = 800 (x, z, θ b ) 5.7.3 5.7 1. (x, z, θ b ) (θ 1,l 1,θ 2 ) 2. θ 1 l 1 ( x, z, θ b ) 3. (x, z, θ b ) ( x, z, θ b ) 4. (x + x, z + z,θ + θ b ) 25

(θ 1,l 1,θ 2 ) 5. θ 1 l 1 ( x, z, θ b ) 6. (x + x, z + z,θ + θ b ) ( x, z, θ b ) (x, z, θ b ) 1mm (θ 1,l 1,θ 2 ) 1mm (x + x, z + z,θ + θ b ) 1mm 4 6 5.8 3mm 5.8 5.5 5.9 5.9 5.9 PWM 26

No Yes 5.7: 27

5.8: ( ) ( ) 28

0.3 5.9 3 ( ) ( ) 0( ) PWM 5.8 PWM 0 5.10 5.10 PC PI 5.9 5.11 PI 29

PWM duty [y/255], Angular Velocity [deg/sec] 60 Load Value 0.024 50 0.02 40 0.016 30 0.012 20 0.008 10 0.004 0 0-10 -0.004 0 0.5 1 1.5 2 2.5 3 3.5 4 Time [sec] PWM duty [y/255], Angular Velocity [deg/sec] 60 Load Value 0.024 50 0.02 40 0.016 30 0.012 20 0.008 10 0.004 0 0-10 -0.004 0 0.5 1 1.5 2 2.5 3 3.5 4 Time [sec] 5.9: ( ) ( ) 30

5.10: 31

2 5.10 PC PC PC 32

6 6.1 6.1.1 6.1 6.1.2 6.2 6.1: 33

15 20cm 1. 2. 20mm 3. 5.8 6.2 PC PC LxSystem[13] 6.3 6.3.1 URG 6.3 URG-X002S( URG ) URG 6.1 URG 34

6.2: 35

6.3: URG [rad] [mm] (x, y) θ URG (x p,y p ) x p = r cos(φ + θ)+x + L cos θ (6.1) y p = r sin(φ + θ)+y + L sin θ (6.2) x p : x y p : y r : φ : x : x y : y θ : L : URG 6.3.2 36

6.1: URG URG-X002S 20 4000mm, 240 20 1000mm 10mm, 1000 4000mm 1% 0.36 100ms/scan 170g 50mm 50mm 70mm URG n (x i,y i ) y = ax + b a,b a = b = n n n n x i y i x i y i i=1 i=1 i=1 ( n n ) n x 2 i 2 (6.3) x i i=1 i=1 n n n x 2 n i y i x i y i x i i=1 i=1 i=1 i=1 ( n n ) n x 2 2 (6.4) i x i i=1 i=1 (x r,y r ) d d = (ax r y r + b) 2 1+a 2 (6.5) URG 6.4 6.4.1 USB cm 37

6.4: USB QV-700N 6.4 Logicool USB QV-700N PC 6.4.2 Camera Calibration Toolbox for Matlab[15] 6.4.3 USB RGB 5 5 6.5 38

6.5: ( ) ( ) 6.4.4 6.6 (u, v) ( u, v) U V 1 θu θv URG L (x obj,y obj,z obj ) x obj = L (6.6) y obj = L tan( θ v v) (6.7) z obj = L tan( θ u u) (6.8) 6.5 6.5.1 L 3 4 39

Y Z Projected Surface Object Projected Surface Object v θv* v Yobj u θu* u Zobj X X Xobj Xobj Top View Side View 6.6: 1. L 3 2. URG 3. URG 4. 5. 6. 7. 8. 5 6 9. 10. L 4 6.7 URG 6.8 40

1 5 9 2 6 10 3 7 11 4 8 12 図 6.7: エレベータによるフロア移動実験の様子 41

y [mm] 4000 2000 0-2000 -4000-6000 3L302-1 3rd Floor Elevator -8000-5000 0 5000 10000 15000 20000 25000 30000 x [mm] y [mm] 4000 2000 0-2000 -4000-6000 3L402 4th Floor Elevator -8000-5000 0 5000 10000 15000 20000 25000 30000 x [mm] 42 6.8: URG

6.5.2 6.9 6.1.2 6.6 5 43

1 5 9 2 6 10 3 7 11 4 8 12 図 6.9: 引き出し操作実験の様子 44

7 PI 3mm PC 45

46

[1] NEC PaPeRo, http://www.incx.nec.co.jp/robot/20-03papero/index.html [2] ApriAlpha, http://www.toshiba.co.jp/about/- press/2003 03/pr j2001.htm [3] PFU MARON-1, http://www.pfu.fujitsu.com/maron/characteristic.html [4], 13. [5] T.Tomizawa, A.Ohya, S.Yuta : Book Browsing System using an Autonomous Mobile Robot Teleoperated via the Internet, Proceedings of IROS 02. [6], 15. [7],,, 03, 2A1-1F-B6 (2003-05) [8], 9. [9], 11. [10], 12. [11], 14. [12] PID, (1992) [13] 15 47

[14] H.Kawata, W.Santosh, T.Mori, A.Ohya, S.Yuta : Development of Ultra-Small Lightweight Optical Range Sensor System, Proceedings of IROS 05. [15] Camera Calibration Toolbox for Matlab : http://www.vision.caltech.edu/bouguetj/calib doc/index.html 48