mobius1

Similar documents
zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

高校生の就職への数学II

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

直交座標系の回転

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,


1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C


2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

プログラム

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

L1-a.dvi

85 4

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

『共形場理論』

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

T T T T A 0 1 A 1 A P (A 1 ) = C 1 6 C 8C 3 = 15 8, P (A ) = C 6 C 1 8C 3 = 3 8 T 5 B P (A 1 B) = =

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ


熊本県数学問題正解

DVIOUT-HYOU

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

高等学校学習指導要領解説 数学編

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

研修コーナー

tnbp59-21_Web:P2/ky132379509610002944

Taro10-名張1審無罪判決.PDF

第86回日本感染症学会総会学術集会後抄録(I)

パーキンソン病治療ガイドライン2002

日本内科学会雑誌第97巻第7号

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

70 : 20 : A B (20 ) (30 ) 50 1

koji07-01.dvi

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a


日本内科学会雑誌第98巻第4号

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

29

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

I

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

入試の軌跡

n ( (

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

snkp-14-2/ky347084220200019175

取扱説明書 [F-08D]

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

極限

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

, = = 7 6 = 42, =

‘¬”R.qx

c 2009 i

PoincareDisk-3.doc



r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

PSCHG000.PS


°ÌÁê¿ô³ØII

*3 i 9 (1,) i (i,) (1,) 9 (i,) i i 2 1 ( 1, ) (1,) 18 2 i, 2 i i r 3r + 4i 1 i 1 i *4 1 i 9 i 1 1 i i 3 9 +

I II

Ł½’¬24flNfix+3mm-‡½‡¹724


JSP58-program



76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =


名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト



6.1 (P (P (P (P (P (P (, P (, P.


「図形の数理」テキストfinal.dvi


Transcription:

H + : ω = ( a, b, c, d, ad bc > 0) 3.. ( c 0 )... ( 5z + 2 : ω = L (*) z + 4 5z + 2 z = z =, 2. (*) z + 4 5z+ 2 6( z+) ω + = + = z+ 4 z+ 4 5z+ 2 3( z 2) ω 2 = 2= z+ 4 z+ 4 ω + z + = 2 ω 2 z 2 x + T ( x) = x 2 T( ω ) = 2 T ( z) ' T O 2 C ' C ' 2x + ' C C ' C ' T ( x) = x C = T ( C )

C C ' ω + z + arg ( T( w) ) = arg ( T( z) ) ó arg = arg ( = θ ) ω 2 z 2 A( ),B(2) AB z = AwB= θ C A B ( AzB) z z 2 z 3 { z n } zn C T( ) = O, T(2) = z n C A B T( z ) n C A,B [ ] [T ] Cabri ( ) Drag z,c example.html

T(x) Cabri x + T ( x) = Cabri x 2 5z+ 2 3( z 2) ω = óω 2 = ó = 2 + ' z+ 4 z+ 4 ω 2 z 2 3 S( x)= x 2 S( ω) = 2 S( z) + S( ω) =2 S( z) 3 ó + + 3 3, S( z) S( ω) 3 2 S( x)= x 2, B(2) K (Cabri!) T( x) S( x) T( x) 2 x + S( x) + = + = = T( x) 3 x 2 3 3 x 2 3 T( ω) = 2 T( z) ó T( ω) = 2 T( z) 3 3 ( S x) hx ( ) = x+ ( T x) 3 ( S x) hx ( )

..2 2 z : ω = L (*) z + z z = z + z =± i. (*) z ( + i)( z+ i) ω + i = + i = z+ z+ z ( i)( z i) ω i = i = z+ z+ ω + i + i z + i i z + = = i ω i i z i z i x i T ( x) = + x i T( ω ) = it ( z) ' O 90 C ' C ' ' C T ( x) C = T ( C ) C C ' w+ i z+ i T( w) = T( z) ó = ( = r ) w i z i A( i), B( i), P( z),q( w) AP : BP=: r, AQ : BQ=: r C A,B ( z z 2 z 3 { z n } zn C A

[ ] [T ] Cabri ( ) Drag z,d example2.html T(x) Cabri ( i)( z i) i ω i = L = + z + ω i z i i S( x) = x i i i S( ω) = is ( z) + S( ω) = i S( z) i ó 2 2 i, S( z) S( ω) 2 90 S( x ) = x i B(i ) T( x) S( x) T( x) 2 i i i x+ i i S( x) = = = T( x) 2 x i 2 2 x i 2 i i T( ω) = i T( z) ó T( ω) = it ( z) 2 2 i S( x) hx ( ) = x T( x) 2 ( S x) hx ( )

..3 3 ) 3z 4 : ω = L (*) z 3z 4 z = z = 2 ( ). (*) z 3z 4 z 2 ω 2= 2 = z z z = = + ω 2 z 2 z 2 T( x) = x 2 T ( ω ) = T( z) + ' C ' C ' T ( x) = + 2 C = T ( C ) x S( x) = x S z = S C ' D T ( x) = S( x) + 2 C, A(2) [P,Q,R, S( x), S( x), T ( x) ]

z z 2 z 3 { z n } zn T(2) = z C A T( z ) ' C n n C A [ ] [T ] Cabri ( ) Drag z,c example3.html

..4. ( c 0 ) c 0 H + : ω = ( a, b, c, d, c 0, ad bc > 0) 2 z = ó cz + ( d a) z b = 0 L(**) 2, 2 (i) (*) 2, α β α, β aα + b aβ + b α =, β = cα cβ aα + b ( ad bc)( z α) ω α = = cα ( )( cα ) aβ + b ( ad bc)( z β ) ω β = = cβ ( )( cβ ) ω α cβ z α = L ω β cα z β x α cβ ( T x)=, k = x β cα T( ω ) = k T( z) ' 2 2 ( cα )( cβ ) = c αβ + cd( α + β) 2 b a d 2 = c cd + = ad bc> 0 L c c ( ) αβ,, k > 0 ( ) αβ,, k =, k ( k = cosθ+ isin θ, k ) () k ( k > 0) () θ ( θ 0) (), ()

(ii) (**) α (i) aα + b ( ad bc)( z α) ω α = = cα ( cz+ d)( cα ) α β 2 ( )( c α ) c d c d ( c d) c( c d ) = c α + α + = α + + α + = + ω α ( ad bc)( z α) z α ad bc z α ad bc ad bc α = β 2 ( cα ) = ad bc c = + ω α z α cα c T( x)=, k x α = cα T( ω ) = T( z) + k ' ad bc > 0, c 0 k 0 () (**)

.2. ( c = 0 ) : ω = ( a, b, c, d, ad bc > 0) c = 0 = ad bc ad > 0 : az + ω = b = a z + b d d d a b = p, = q ad > 0 p > 0 d d : ω = pz + q ( p > 0) L (*) (i) p ( a d) q b α = pα + q α = = (*) p d a ω α = pz ( α) T( x) = x α T ( ω ) = p T( z). : ω = 3z 2 ω = 3( z ) A() 3. (ii) p = ( a = d) ω = z+ q L (*) * (**) ω = z + 2 c = 0

.3. ( ) abcd,,,, ad bc 0 : ω = ( ad bc 0) L (*) ó + ( ) = 0 L(**) 2 z = cz d a z b #. c 0 A, x α cβ α β ( T x)=, k x β cα = T( ω ) = k T( z) L (#) c (B) α T( x)=, k x α = cα T ( ω ) = T( z) + k L (#) 0 c = b a (C) a d ( T x) = x α = x, k = d a d (D) a= d ( T x) = x, T( ω ) = k T ( z) L (#) b k = d T( ω ) = T( z) + k L (#) T ( ω ) = k T( z) k > 0, k k = T( ω ) = T( z) + k