Similar documents
2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

DVIOUT

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

DE-resume

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

08-Note2-web

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s


M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

v er.1/ c /(21)

pdf

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

II 2 II


i

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


29

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

入試の軌跡

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

( ) ( )

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

Part () () Γ Part ,

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

振動と波動

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

i


1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

6. Euler x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,



熊本県数学問題正解


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x ( ) x dx = ax

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

I 1

A


webkaitou.dvi

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

chap1.dvi

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) x y f(x, y) = ax


Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

2011de.dvi

function2.pdf

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

Transcription:

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b ) ax + b = t y = e t, t = ax + b dy dx = dy dt dt dx = d d dt et dx (ax + b) = et a = ae ax+b.. (.) f(x) dx x = g(t) x t, f(x) f(g(t)), dx dx dt dt f(x)dx = f(g(t)) dx dt dt. t a b x g(a) g(b) g(b) g(a) f(x)dx = b a f(g(t)) dx dt dt. 1

[ 1] e ax+b dx (a 0, b ). ax + b = t e ax+b = e t, x = t b a e ax+b dx = e t 1 a dt = 1 a eax+b. dx = dx dt dt = 1 dt a dt [ 2] 1 + t. 2 x = tan 1 t dx dt = 1 dx = dx 1 + t 2 dt dt = dt 1 + t = dx = x = tan 1 t. 2 dt 1 + t2 u vdx = uv uv dx, b u vdx = [uv] b a b a a uv dx. e a+b = e a e b, e a b = ea e b, eab = (e a ) b. log AB = log A + log B, log A B = log A log B, log Ak = k log A, A, B 0. a = e b b = log a e log a = a, log e b = b. (e x ) = e x, (log x ) = 1 x. 1 e x dx = e x, dx = log x, x y = e ax log x dx = x log x x. y 1 O a > 0 a < 0 x 2

sin 2 x + cos 2 x = 1, 1 + tan 2 x = 1 cos 2 x, cos(α + β) = cos α cos β sin α sin β, sin(α + β) = sin α cos β + cos α sin β ( (sin x) = sin x + π ) = cos x 2 ( (cos x) = cos x + π ) = sin x 2 (tan x) = 1 cos 2 x. ( cos xdx = sin x = cos sin xdx = cos x = sin sin 1 x = y sin y = x 1 < x < 1, π 2 < y < π 2. cos 1 x = y cos y = x 1 < x < 1, 0 < y < π. tan 1 x = y tan y = x < x <, π 2 < y < π 2. (sin 1 x) = x > 0 1 1 x 2, (cos 1 x) = x n m = m x n, x n 1 m = m, (n, m = 1, 2,... ) x n x 1 2 = x, x 1 2 = 1 x. (x α ) = αx α 1 (α; ). α = 1 2, ( ) 1 x = 2 x. x α dx = xα+1 (α 1; ). α + 1 dx x 1 dx = = log x. x 1, 1 x 2 (tan 1 x) = 1 1 + x. 2 x π 2 ). ( x π 2 ). 3

0 0.1 x, x 2 3x + 2 = 0 x,, x = 1 x = 2., ( x) ( y(x)), y (x) = 3y(x). x, y(x).,.. y(x) = Ce 3x (C )., ( x, y) ( u(x, y)) (u x (x, y), u y (x, y), ).. 0.2 (1) y (x) = 4x x, y = y(x). y = 2x 2 + C, C. (2) y (t) = 4y(t) t, y = y(t). y = Ce 4t, C. (3) u xx (x, y) + u yy (x, y) = 0. x y. u = u(x, y). u = log(x 2 + y 2 ). 4

0.3 0.3.1. t [s] 0 m [kg] mg t y(t) [m] t v(t) [m/s] t a(t) [m/s 2 ] y(t). (y, v.) mg v(t) = dy dt a(t) = d2 y dt 2. F (t) F (t) = ma(t) a(t). Newton. F F = mg y(t) my (t) = mg y (t) = g. y(t) = 1 2 gt2 + v(0)t + y(0) [m]., y(0), v(0) 0 y(t) = 1 2 gt2 [m/s] [ ]. [ ] t = 1, 5, 10, 20, 30. 5

,. k kv(t), F = mg kv(t). my (t) = mg ky (t) my (t) + ky (t) mg = 0. y = mg (( v(0) m ) ( ) ) 1 e k m t + t + y(0) [m] k g k., y(0), v(0) 0 y = mg ( t m )) (1 e k m t [m] k k. [ ]. t.. ( ) [mm] 0.02 0.15 0.5 1 2 3 [m/s] 0.01 2 0.5 2.2 4 6.2 7.8 6

0.3.2.. t [s], ky (t) m [kg], t y(t) [m]. (,.) 0 y(t), ky(t) [N]. k > 0. y(t) my (t) = ky(t). k y = C 1 cos m t + C 2 sin. k t m y = A sin (C 1, C 2, A, φ y(0), y (0) ) ( ) k m t + φ [ ]. 0.3.3 q q t I(t) L C I(t) I (t) + LCI(t) = 0. (.) I = C 1 cos LCt + C 2 sin LCt ( ) y = A sin LCt + φ (C 1, C 2, A, φ I(0), I (0) ). 7

0.3.4 t [h] ( ) y = y(t) [ ] u(t, t) = y(t + t) y(t) y(t). u(t, t) t t + t ( t ). u(t, t) t t u( t) (u(0) = 0 ) y(t + t) y(t) t = u( t) u(0) y(t) t. t 0 y(t) y (t) = u (0)y(t). u (0) = k y = y(0)e kt. k t = 0,. [ ].. ( ) 0 1630 1660 1800 1850 1900 1950 1970 2004 ( ) 2.5 4 4.45 8 10 16 22 36.2 63.3 8

. k ly(t) (l ) y (t) = (k ly(t))y(t) y = y(0) ( 1 l y(0)) e k kt + l y(0) k. [ ]. [ ],. 0.4 1... 2.,. 3.. 4.,. 9

1 1 x. x y = y(x) y (x), y (x),... F (x, y, y, y, ) = 0 y..,., y, y, y 1,., y, y, y, x., ( ).. 1.0 1 f(x, y) 2, y (x) = f(x, y) (1) 1. x x 0, y(x 0 ), y (x 0 ),. { y = f(x, y) (2) y(x 0 ) = a 0. (2). y = y(x) ( ) (x, y) f(x, y). (x, y) (1, f(x, y)) ( )., (x, y) f(x, y). (x, y). (x, y) f(x, y).,.,. x. 10

1.0 f(x, y), f y (x, y) xy D, (x 0, a 0 ) D. (x 0, a 0 ) (2). [ ] f(x, y), f y (x, y). [ ] (x 0, a 0 ). f(x, y) = y y 2, ( )..(. ) 2.5 2 2 1.5 1 1 0.5-1 -0.5 0.5 1-1 -0.5 0.5 1-0.5-1 -1 y = y y 2-1.5 y = y y 2. y = y 1 (x), y = y 2 (x) (2) 2. x > x 0. d dx (y 1(x) y 2 (x)) 2 = 2(y 1(x) y 2(x))(y 1 (x) y 2 (x)) = 2(f(x, y 1 ) f(x, y 2 ))(y 1 (x) y 2 (x)), f(x, y 1 ) f(x, y 2 ) = f y (x, ξ) (ξ y 1 (x) y 2 (x) ), f x (x, y) (x 0, a 0 ) C < 2C(y 1(x) y 2 (x)) 2 11

e 2Cx e 2Cx d dx (y 1(x) y 2 (x)) 2 2Ce 2Cx (y 1 (x) y 2 (x)) 2 < 0 = d ( e 2Cx (y 1 (x) y 2 (x)) 2) dx e 2Cx (y 1 (x) y 2 (x)) 2. e 2Cx (y 1 (x) y 2 (x)) 2 < e 2Cx 0 (y 1 (x 0 ) y 2 (x 0 )) 2 = 0 x > x 0 y 1 (x) = y 2 (x) (2). 1.1 1 ( ) a y (x) + ay(x) = 0 (3) 1. 1 (1) f(x, y) = ay. 1.1. (1.1) y(x) = Ce ax (C : ) (4). [ ] (4), (e ax ) = ae ax. (4). 1.0,. 1.2. a, x 0, y 0, y (x) + ay(x) = 0, (3) y(x 0 ) = y 0 (5) 12

y(x) = y 0 e a(x x 0) (6). [ ] (3) 1.1 y(x) = Ce ax (4),, (5) C. (4) x = x 0, y(x 0 ) = Ce ax 0 (5) y 0 = Ce ax 0 C = y 0 e ax 0. C (4) (6). 1.2 1 ( ) x, y(x), a, r(x). y (x) + ay(x) = r(x) (7) 1. f(x, y) = ay + r(x). (1) 1.3. r(x). (7) ( ) y(x) = r(x) e ax dx + C e ax (C : ) (8). [ ] (8) ( ( ) y (x) = r(x) e ax dx + C) e ax + r(x) e ax dx + C (e ax ) ( ) = (r(x) e ax ) e ax + r(x) e ax dx + C ( ae ax ) = r(x) a y(x) (8) (7). 13

(8), (7) 1.0,. [ 1.4] y (x) + 2y(x) = 2x. e 2x,. e 2x e 2x y (x) + 2e 2x y(x) = 2xe 2x. = ( e 2x y(x) ) e 2x y(x) = 2xe 2x dx + C. ( ) 1 2xe 2x dx = 2x 2 e2x, y = x 1 2 + Ce 2x. ( ) 1 2 2 e2x dx + C = xe 2x 1 2 e2x + C 1.3 1 y(x), f(x), r(x). y (x) + f(x)y(x) = r(x). (9) 1. r(x) 0, r(x) 0. (1) f(x, y) = f(x)y + r(x). 1.4. f(x). 1 y(x) = C e F (x) (C : ) (10). F (x) f(x). 1.5. f(x), r(x). 1 ( ) y(x) = r(x) e F (x) dx + C e F (x) (C : ) (11) 14

. F (x) f(x). e F (x) (10). ( [ 1.5 ] (11) (9). ) e F (x) = f(x) e F (x) (11) ( ( ) (e y (x) = r(x) e F (x) dx + C) e F (x) + r(x) e F (x) F (x) dx + C ) ( ) ( f(x) = r(x) e F (x) e F (x) + r(x) e F (x) dx + C ) e F (x) = r(x) f(x) y(x) (9). (11) (9) 1.0,. [ 1.8.] y (x) + 2 x y(x) = x, y(1) = 0. y 2x 2x dx = x 2 + C (C ) e x2. e x2 y (x) + 2xe x2 y(x) = xe x2 ( ). e x2 = 2xe x 2 = ( ) e x2 y(x) e x2 y(x) = ( x)e x2 dx + C C. x 2 = t ( x)e x2 dx = 1 2 ex2 + C C. e x2 y(x) = 1 2 + Ce x2 C,. x = 1 y(1) = 0 C = e 2 y(x) = e1 x2 1. 2 15,

= ( ) 1 (9). r(x) 0 (9) F (x) y(x) = C e (F (x) : f(x), C : ), C u(x) F (x) y(x) = u(x) e r(x) 0 (9).. 1.4 1 (7) r(x),,.,.. 1.6. ( ) 1 y (x) + f(x)y(x) = r(x). (9) F (x) y(x) = y p (x) + C e. y p (x) (9), F (x) f(x), C. C e F (x) (9) r(x) 0 y (x) + f(x)y(x) = 0 (12). [ ] y(x), y p (x) (9) y (x) + f(x)y(x) = r(x), (y p (x)) + f(x)y p (x) = r(x) 16

. (y(x) y p (x)) + f(x)(y(x) y p (x)) = 0, y(x) y p (x) (12). 1.4 F (x) y(x) y p (x) = C e. 1.6 (9) y p (12). f(x) a ( ) r(x),,,. [r(x) = n ] { n (a 0 ) y p (x) = n + 1 (a = 0 ). [ 1.10] y + 3y = x 2 1 (a). y p = αx 2 + βx + γ (a) y (y p ) + 3y p = (2αx + β) + 3(αx 2 + βx + γ) = 3αx 2 + (2α + 3β)x + β + γ = x 2 1. 3α = 1 2α + 3β = 0 β + γ = 1. α = 1 3, β = 2 9, γ = 7 27 y p = 1 3 x2 2 9 x 7 27., y + 3y = 0 (b) y = Ce 3x a y = 1 3 x2 2 9 x 7 27 + Ce 3x. 17

[r(x) = cos ωx, sin ωx ] y p (x) = α cos ωx + β sin ωx α, β. [ 1.12] y + 2y = cos x (a). y p = α cos x + β sin x (a) y (y p ) +2y p = ( α sin x+β cos x)+2(α cos x+β sin x) = (2α+β) cos x+(2β α) sin x = cos x. 2α + β = 1 α + 2β = 0. α = 2 5, β = 1 5 y p = 2 5 cos x + 1 sin x. 5, y + 2y = 0 (b) y = Ce 2x (a) y = 2 5 cos x + 1 5 sin x + Ce 2x. [r(x) = ke qx (q a) ] y p (x) = αe qx α. [ 1.13] y y = 2e 2x (a). y p = αe 2x (a) y (y p ) y p = (2α α)e 2x = 2e 2x. α = 2., y y = 0 (b) y = Ce x (a) y = 2e 2x + Ce x. 1.5, y (x) = f(x)g(y(x)) (f,g. ) (13), ( ). (13). 18

[ ] (Step 1) g(y 0 ) = 0 y 0., y(x) y 0 (13). (Step 2) y(x) = y 0. ((13) x y(x) y 0 x y(x) y 0.) (Step 2-1) (13) g(y(x)) : 1 dy g(y(x)) dx = f(x). (Step 2-2) x : 1 dy g(y(x)) dx dx = f(x) dx + C. (Step 2-3) x y dy g(y) = f(x) dx + C.. [ ] y (x) = y(x)(2 y(x)) (a). (a) (13) f(x) = 1, g(y) = y(2 y). y = 0, y = 2 (a). y 0, 2 y(y 2) 1 dy y(y 2) dx = 1. x 1 dy = y(y 2) dx dx = ( 1 = 2(y 2) 1 ) 2y = 1 2 log y 2 y = x + C. y y = 2Ce2x Ce 2x 1 1 dx = x + C. (C ). 1 y(y 2) dy dx = 1 2 log y 2 y + C.. y = 0 y = 2.. 19

1.6 ( ),. 1.6.1 ( ) y(x) y (x) = f x (f. ) [ ] u = y y u u, x y = (xu) = u + xu u = f(u) u x. [ ] y (x) = x (a). y(x) f(u) = 1 u u = 1 + u2 xu, u = ± C x 2 x x 2 + y 2 = C. 1.6.3 y (x) = f(ax + by(x) + c) (f, a, b, c. ) [ ] u = ax + by + c y u u,. [ ] y (x) = 1 x + y(x) (a). u = x + y u = 1 + 1 u u log u = x + C y log(x + y + 1) = C. 20

2 2 2.1 2 (2.1) y + ay + by = 0, a, b : 2.,.. 2.1.1 1 2 λ 1 = cos q 1 + i sin q 1, λ 2 = cos q 2 + i sin q 2 λ 1 λ 2 = (cos q 1 + i sin q 1 )(cos q 2 + i sin q 2 ) = cos(q 1 + q 2 ) + i sin(q 1 + q 2 ). λ 1 λ 2 λ 2 λ 1 q 1 q 2 q 1 O O O q 2. λ = p + iq (p, q ) e λ = e p (cos q + i sin q). e λ 1+λ 2 = e λ 1 e λ 2., λ = p + iq, x, x x e λx, d dx eλx = λ e λx, e λx dx = 1 λ eλx. λ 0., i. 21

2.1.2 C 1, C 2 y 1 (x), y 2 (x) (2.1) = C 1 y 1 (x) + C 2 y 2 (x) (2.1).. [ ] C 1 y 1 (x) + C 2 y 2 (x) (2.1) (C 1 y 1 (x) + C 2 y 2 (x)) + a(c 1 y 1 (x) + C 2 y 2 (x)) + b(c 1 y 1 (x) + C 2 y 2 (x)) = C 1 (y 1(x) + ay 1(x) + by 1 (x)) + C 2 (y 2(x) + ay 2(x) + by 2 (x)) = 0 (2.1). 2.1.3, a = OA, b = OB { a, b} ( ), O, A, B. k 1, k 2 k 1 a + k 2 b = 0 = k 1 = k 2 = 0., a = (a 1, a 2 ), b = (b 1, b 2 ) { a, b} a 1 b 1 a 2 b 2 0.. 1 {y 1 (x), y 2 (x),, y m (x)} k 1, k 2,, k m x k 1 y 1 (x) + k 2 y 2 (x) + + k m y m (x) = 0 = k 1 = k 2 = = k m = 0.. [ ] 1. {1, x, x 2,, x m }. 2. {e a 1x, e a 2x,, e amx }, (a 1,, a m. (2.1) 1. 22

2.1.4 2 (2.2) λ 2 + aλ + b = 0 (2.1),. a 2 4b D. [1] (2.1). [1-1] D > 0. λ 1, λ 2 ( 2 ) {e λ 1x, e λ 2x }. [1-2] D = 0. λ ( ) {e λx, x e λx }. [1-3] D < 0. λ 1, λ 2 ( 2 ) {e λ 1x, e λ 2x } [2] {y 1 (x), y 2 (x)} (2.1), (2.1) y(x) = k 1 y 1 (x) + k 2 y 2 (x), (k 1, k 2 )... A. [1] λ y = e λx (2.1). [2] λ, y = xe λx (2.1). [.] [1] y = e λx (2.1) (e λx ) + a(e λx ) + b(e λx ) = λ 2 e λx + aλe λx + be λx = (λ 2 + aλ + b)e λx = 0 (2.1). [2] λ λ = a 2, y = xeλx (2.1) (xe λx ) + a(xe λx ) + b(xe λx ) = (λ 2 + aλ + b)xe λx + (2λ + a)e λx = 0 23

y = xe λx. [ ] [1]. (2.5) { y + ay + by = 0, (1) y(0) = A, y (0) = B (2) 2 (2.1). (2). (2 2.) B. (2.5). y(0) = 0, y (0) = 0 y(x) 0. [.] y 1 (x), y 2 (x) (2.5). ( (y 1 y 2 ) 2 + (y 1 y 2) 2 ) = 2(y1 y 2 )(y 1 y 2) + 2(y 1 y 2)(y 1 y 2) = 2{(y 1 y 2 ) a(y 1 y 2) b(y 1 y 2 )}(y 1 y 2) ( ) < K (y 1 y 2 ) 2 + (y 1 y 2) 2 (K ), (y 1 (x) y 2 (x)) 2 + (y 1(x) y 2(x)) 2 < ekx ( (y 1 (0) y 2 (0)) 2 + (y 1(0) y 2(0)) 2 ). 0 y 1 (x) y 2 (x). [ ] C. {y 1 (x), y 2 (x)} {( ) ( )} y 1 (0) y 2 (0), y 1(0) y 2(0) [ ]., k 1 y 1 (x) + k 2 y 2 (x) 0, (k 1, k 2 ) (0, 0) k 1, k 2. k 1 y 1(x) + k 2 y 2(x) 0 ( ) ( ) ( ) y 1 (x) y 2 (x) 0 k 1 + k y 1(x) 2 = y 2(x) 0 x = 0.. 24

( ) ( ) ( ) y 1 (0) y 2 (0) 0 k 1 + k y 1(0) 2 =, (k y 2(0) 1, k 2 ) (0, 0) 0 k 1, k 2. Y (x) = k 1 y 1 (x) + k 2 y 2 (x), Y (0) = 0, Y (0) = 0 (2.1) B Y (x) 0. {y 1 (x), y 2 (x)}. [ ] [1-1] [1-3] D. {y 1 (x), y 2 (x)} (2.1) (2.1) y(x) k 1, k 2 y(x) = k 1 y 1 (x) + k 2 y 2 (x), (k 1, k 2 ). [ ] {( ) ( )} y 1 (0) y 2 (0), y 1(0) y 2(0) k 1, k 2. ( ) ( ) ( ) y 1 (0) y 2 (0) y(0) k 1 + k y 1(0) 2 = y 2(0) y (0) Y (x) = k 1 y 1 (x) + k 2 y 2 (x), Y (0) = y(0), Y (0) = y (0) (2.1) B Y (x) y(x). y(x) = k 1 y 1 (x) + k 2 y 2 (x). [ ] [2]. 25

2.1.5 D < 0, D < 0 y(x) = k 1 e λ 1x + k 2 e λ 2x, (k 1, k 2 ).,. a, b λ 1 = A+iB, λ 2 = A ib (A, B ). A, B {e Ax cos Bx, e Ax sin Bx} y = C 1 e Ax cos Bx + C 2 e Ax sin Bx (C 1, C 2 ).. [ ] 1 2 (eλ 1x + e λ 2x ) = e Ax cos Bx (= y 1 (x) ), 1 2i (eλ 1x e λ 2x ) = e Ax sin Bx (= y 2 (x) ) ( )2., y 1 (0) y 2 (0) y 1(0) y 2(0) = 1 0 D A B = B = 0 2. [2]. 26

2.3 2 (2.12) y + ay + by = r(x), r(x) : 0 2. 2.3.1 (2.12) y p (x) (2.12).. y = y p (x) + (2.1) [ ] y(x) (2.12). Y (x) = y(x) y p (x) Y (x)+ay (x)+by (x) = (y (x)+ay (x)+by(x)) (y p(x)+ay p(x)+by p (x)) = r(x) r(x) = 0 Y (x) (2.1). 2.3.2 [ 1] 2 y i (x) (i = 1, 2) y + ay + by = r i (x), i = 1, 2., C 1, C 2 Y = C 1 y 1 (x) + C 2 y 2 (x) Y + ay + by = C 1 r i (x) + C 2 r 2 (x). [ ]. = (C 1 y 1 (x) + C 2 y 2 (x)) + a(c 1 y 1 (x) + C 2 y 2 (x)) + b(c 1 y 1 (x) + C 2 y 2 (x)) = C 1 (y 1 + ay 1 + by 1 ) + C 2 (y 2 + ay 2 + by 2 ) = C 1 r 1 + C 2 r 2 = 27

[ 2] (i) λ, y p (x) = A e λx (a) y + ay + by = ke λx (b) A. (ii) λ, D 0, y p (x) = Ax e λx (c) (b) A. [ ] (i) (a) (b) = (A e λx ) + a(a e λx ) + b(a e λx ) = A(λ 2 + aλ + b)e λx λ 2 + aλ + b 0. (i) (c) (b) = (Ax e λx ) + a(ax e λx ) + b(ax e λx ) = A{(2λ + a)e λx + (λ 2 + aλ + b)xe λx } λ 2 + aλ + b = 0, 2λ + a = D 0. [ 3] y(x), r(x), Y (X) = Re y(x), Z(X) = Im y(x). y(x) y + ay + by = r(x), (a), Y (x), Z(x) Y + ay + by = Re r(x) Z + az + bz = Im r(x). [ ] y = Y + iz, r(x) = Re r(x) + iim r(x) (a) = (Y + iz) + a(y + iz) + b(y + iz) = (Y + ay + by ) + i (Z + az + bz) (a) = Re r(x) + iim r(x),. 28

k, k 1, k 2, α, β. (2.12) y p (x). 1. r(x) = k e λx, (λ ) (a) λ y p (x) = Ae λx. (b) λ, D = a 2 4b 0 y p (x) = Axe λx. 2. r(x) = k cos βx k sin βx, (a) ±iβ y p (x) = A cos βx + B sin βx. (b) ±iβ y p (x) = A x cos βx + B x sin βx. 3. r(x) = k e αx cos βx k e αx sin βx, (a) α ± iβ y p (x) = A e αx cos βx + B e αx sin βx. (b) D 0 α ± iβ y p (x) = A xe αx cos βx + B xe αx sin βx. 4. r(x) = n, (a) a 0, b 0 (b) a 0, b = 0 (c) a = 0, b = 0 y p = n. y p = n + 1. y p = n + 2. (2.12) A, B,. [ ] 1 [ 2]. 3 λ = α + iβ e αx cos βx = Ree λx, e αx sin βx = Ime λx [ 2, 3]. 4. 29

2.3.3,.. C. (i). Ids I B r P Ids db Φ = S Ids P db = k Ids r r 3. (Biot-Savard ) C, C B = k Ids r r 3 C, C S.. B S B n ds (n S ). Φ S C. Φ = LI (L )., ( ) Φ, C Φ E. E = dφ dt. (Lenz ). 2 E = L di dt. ( ). 30

(ii). +q E q E. ±q E E = q C (C ).. (iii). R E I. E = IR.. E = sin ωt, t I(t). L, C, R,,, E L, E C, E R, q. E L = LI : ( ) E C = q C : ( ) E C E R = IR : ( ) q q I = q, E L L C I R E R E L + E C + E R + E = 0 : ( ) E LI RI + q C = E = sin ωt E, I = q (P ) LI + RI + 1 I = ω cos ωt C. 31

(P ), (P ). (P 0 ) LI + RI + 1 C I = 0 Lλ 2 + Rλ + 1 C = 0. D ( D = R 2 4L ) < 0 C.. λ = R 2L ± Di, { e R 2L t cos Dt, e R 2L t sin Dt }. 2.3.1 (P ) I(t) = I 0 (t) + I p (t),. I 0 (t) = C 1 e R 2L t cos Dt + C 2 e R 2L t sin Dt, I p (t) (P ) ((P 0 ) ). I 0 (t) < ( C 1 + C 2 )e R 2L t 0 (t ) I 0 (t), I p (t). I p (t). Ĩ ( P ) LĨ + RĨ + 1 C Ĩ = ωeiωt. ( P ). ( P ) A Ĩ = Ae iωt ( Lω 2 + irω + 1 C ) e iωt = ωe iωt 32

A = ω Lω 2 + irω + 1 C = 1 Lω + ir + 1 Cω ( Z ). 1 Z = 1 π Z ei(φ ( P ) 2 ), φ tan φ = Ĩ = 1 Z eiωt = 1 π Z ei(ωt+φ 2 ) 1 Lω cω R., cos ωt = Ree iωt 2.3.2. [ 3] ReĨ I p = 1 Z cos(ωt + φ π 2 ) = 1 sin(ωt + φ) Z (P ). I = E/R. Z = ( 1 Cω Lω)2 + R 2., ω ω 1 LC. L = C = 1 ω I 1. 1 I_1 where L=C=R=1,omega=0.25,0.5,1 0.5 10 20 30 40-0.5-1 33

1 I_1 where L=C=R=1,omega=1,2,8 0.5 10 20 30 40-0.5-1 34

3.1 3.1.1 0 f(t) dt = F (t) = f(t) 0 f(t) dt = 3.1.2 f(t) (0, ) t, s. F (s) = 0 e st f(t) dt s, F (s) f(t) L(f(t)), L(f), L(f)(s),. (5.1) L(f)(s) = 0 e st f(t) dt. (5.1) L t f(t) s F (s),. f(t) :,. : M, α f(t) < Meαt, (t > 0), α < s s F (s), Laplace.. 3.1.3 L(f(t)) = F (s) t f(t), ( ). L 1 (F (s)) = f(t) L 1. 35

3.1.4 [ 1. ] f 1 (t), f 2 (t),f 1 (s), F 2 (s) c 1, c 2 L(c 1 f 1 (t) + c 2 f 2 (t)) = c 1 L(f 1 (t)) + c 2 L(f 2 (t)), L 1 (c 1 F 1 (s) + c 2 F 2 (s)) = c 1 L 1 (F 1 (s)) + c 2 L 1 (F 2 (s)). : [ 1..] a : L(e at ) = 1 s a (s > Re a ) L(1) = 1 s ( ) ( ) 1 1 L 1 = e at L 1 = 1 s a s [ 2..] a L(f(t)) = F (s) (s > α ) L(e at f(t)) = F (s a) (s > α+a ) : 36

[ 2..] n = 1, 2, : L(t n ) = n! s n+1, (s > 0 ) n! L(e at t n ) =, (s > a ) (s a) n+1 ( ) ( ) 1 L 1 = tn s n+1 n!, 1 L 1 = eat t n. (s a) n+1 n! [ 3. Heaviside.] { 0 (t < λ ) H λ (t) = 1 (t > λ ) λ > 0 Heaviside. : L(H λ ) = e λs s (s > 0.) 37

3.1.5 ( ) (I) f(t) L(f (t)) = s L(f(t)) f(0), (s ). (II) f(t) 2 L(f (t)) = s 2 L(f(t)) s f(0) f (0), (s ). : 38

3.2 3.2.1 { y (t) + y (t) 6y(t) = 6e t, (1) y(0) = 0, y (0) = 1 (2). 1 (1) L(y (t)) + L(y (t)) 6L(y(t)) = 6L(e t ). L(y (t)) = s 2 L(y(t)) s y(0) y (0), L(y (t)) = s L(y(t)) y(0),, L(e t ) = L(y(t)) = Y (s) (s 2 + s 6)Y (s) sy(0) y (0) y(0) = 2 (2) (s 2 + s 6)Y (s) =. Y. 3 Y (s) Y (s) = 39

.. = 1 1 2 s + 3 + 3 1 2 s 1 1 s 2 4 (3) y(t) = L 1 (Y (s)) = 1 2 e 3t + 3 2 et e 2t (1), (2). 5. (3) y (t) = 3 2 e 3t + 3 2 et 2 e 2t, y (t) = 9 2 e 3t + 3 2 et 4 e 2t. (1) (3) (1). (2). 40