nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

Similar documents
5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

30

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

i 18 2H 2 + O 2 2H 2 + ( ) 3K

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

Maxwell

( ) ,

日本内科学会雑誌第102巻第4号

³ÎΨÏÀ

CVMに基づくNi-Al合金の

Part () () Γ Part ,

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

現代物理化学 2-1(9)16.ppt

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

第90回日本感染症学会学術講演会抄録(I)

Ł\”ƒ-2005

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

The Physics of Atmospheres CAPTER :

master.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

液晶の物理1:連続体理論(弾性,粘性)

現代物理化学 1-1(4)16.ppt

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 2019

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

all.dvi

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

newmain.dvi


Microsoft Word - 11問題表紙(選択).docx


..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

第1章 微分方程式と近似解法

( ) ) AGD 2) 7) 1

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

tnbp59-21_Web:P2/ky132379509610002944

プログラム

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

理想気体ideal gasの熱力学的基本関係式

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

QMI13a.dvi

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

nsg04-28/ky208684356100043077

untitled

微粒子合成化学・講義

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

パーキンソン病治療ガイドライン2002

微粒子合成化学・講義

研修コーナー

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

抄録/抄録1    (1)V

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

日本内科学会雑誌第97巻第7号

日本内科学会雑誌第98巻第4号

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

構造と連続体の力学基礎


1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

Untitled

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

meiji_resume_1.PDF

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

LLG-R8.Nisus.pdf

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

2011de.dvi

本文/目次(裏白)

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =




: , 2.0, 3.0, 2.0, (%) ( 2.

Transcription:

.1 1nm (T = 73.15K, p = 101.35kP a (1atm( )), 1bar = 10 5 P a = 0.9863atm) 1 ( ).413968 10 3 m 3 1 37. 1/3 3.34.414 10 3 m 3 6.0 10 3 = 3.7 (109 ) 3 (nm) 3 10 6 = 3.7 10 1 (nm) 3 = (3.34nm) 3 ( P = nrt, R k B A (1) P ( ) P = RT, : ( v n 1( [1] Fig.16-1 ) T 1 Ar -185.9 C=(73.16 185.9 = 87. 6)K R/P P T P (P, T ) P (P, T ) y P x P (P, T ) = RT (3) x (Fig16-[1]) H., CO 1 (1atm=101.35kP a ) ( ( P (P, T ) = βp (4) T = 73.15K β(h ) > 0 β( ) < 0, β(co ) < 0 β 1 T P T = lim P 0 R () 10

1 (l/mol) ( ) 100K (T = 73.15) P (/(l atm mol 1 ) P (/atm) P (x ).414 3(Fig16-3[1]) RT (compressibility factor)z Z P, Z = 1 (5) RT 11

3(Fig16-3[1]) 1 He 3b(Fig16-4[1]) int (RT ) 600K RT =8.3145 600 = 4988.7(Jmol 1 K 1 K) = 4.9887kJmol 1 5kJmol 1 3a Z P RT 3b 1

4 Z ( ) 4(Fig16-10[1]) H 3 β β. 1 Z P RT = 1 + B (T ) + B 3 (T ) + (6) 1 B (T ) P Z = 1 + B P (T )P + B 3P (T )P + (7) B (T ) = RT B P (T ) 3 B 3P (T ) = B 3 (T ) B (T ) (RT ) 13

= ZRT P Z (7) Z = 1 + (6) Z P RT = 1 + B (T )P ZRT + B 3 (T )P (ZRT ) + B (T )P RT (1 + B P (T )P + B 3P (T )P + ) + B 3 (T )P (RT ) (1 + B P (T )P + B 3P (T )P + ) + = 1 + B (T )P RT [ 1 BP (T )P B 3P (T )P + B P (T ) P + ] + B 3 (T )P = 1 + B P (T )P + B 3P (T )P + (RT ) [1 1/B P (T )P + ] 3 3 4(Fig16-, 3, 4, 10[1]) Z P B P (T ) 5 B 5(Fig16-11[1]) B (T ) He 0 (kinetic theory of gases) B (T ) = RT B P (T ) = π A [exp ( U(r)/k B T ) 1)] r dr (8) 0 14

U(r) 1 B (T ) (8) [exp ( U(r)/k B T ) 1)] U(r)..1 an der Waals (P + a )( b) = RT an der Waals a, b b ( b) ( b P = RT ( b) a (9) P [] P < u x > P = m < u x > m 1 m { < u x > + < u y > + < u z > } = 3 k BT P = RT ( ) a (9) a an der Waals Z = P RT = b a RT 15

Z = 1 1 b a RT ( ) b 1 + a ( ) ( ) 3 b b RT + + + = 1 + (b a RT ) 1 ( ) ( ) 3 b b + + + B (T ) = (b a RT ) B P (T ) = (b a RT ) 1 RT an der Waal a b 3 3 an der Waals 3 B 3 (T ) = b B 3P (T ) = 1 (RT ) 3 ( ) a RT ab 5 Fig.16-, 3, 4,10, 11) B (T ), B P (T ) B Boyle T B an der Waals B (T ), B P (T ) T B = a br 3 ( B 004 T B 16

T/K He e Ar Kr Xe 80 10.6-11.8-88.0 100 11.4-4.8-187.0 10 11.8-0.4-133.0-308.0 140 1.1.6-99.8-9.0 160 1.3 4.8-77. -179.0 180 1.3 6.4-60.9-143.0 00 1.3 7.6-48.7-117.0 40 1.1 9.4-31.5-8.4-196.0 80 1.0 10.6-0.1-59.6-147.0 30 11.7 11.5-11.9-43.7-133.0 360 11.4 1.1-5.8-31.9-88.4 400 11.1 1.6-1.1 -.9-69.8 450 10.9 13.0 3.4-14. -5.5 500 10.7 13.3 6.9-7.5-38.8 600 10.4 13.8 11.9.0-19.6 800 9.8 14. 17.8 13..7 1000 9.3 14.3 1.1 19.5 15.0.3 ( ) (-7) M M 3 5 [3] Reif Fundamental of Statistical and Thermal Physics Chapter 6[4].3.1 (microcanonical ensamble) ( ) E E + δe E E < E l < E + δe 3 1 1 (1961, March15) ( ) + 17

x i dx i X i W X i dx i x i = X i = P w P d [x i, X i ] P = 0 E Ω 0 (E,,, x) E Ω 0 (E,,, x) = Ω 0 (E,,, x) = 0 E l E 1 (10) 1 h 3( A+ B + ) dγ (11) A! B! H E Ω(E,,, x) dω 0(E,,, x) de (1) 4 E E + δe,, x W (E, δe,,, x) = Ω(E,,, x)δe (13) Boltzmann W S(E,,, x) = k log W (E, δe,,, x) (14) 1 ( E(n x, n y, n z, ) = h π ( n m X /3 x + n y + n ) z (15) [5] 1 Ω 0 (E, ) Ω(E, ) R n = (n 1 + n + n 3 ) 8 Ω 0 (E, ) 8 1 4π 3 8 R3 n = 1 6 πr3 n (16) = 1 6 π [( n x + n y + n z )] 3/ = 1 [ 6 π mx /3 ] 3/ E h π = π3/ (m X ) 3/ 6h 3 π 3 E 3/ (mx ) 3/ = 3h 3 π E 3/ 4 Ω 18

E Ω 0 (E, ) = m 3/ X 3h 3 π E3/ (17) Ω(E, ) = dω 0(E, ) de 3/ m X = h 3 π E (18) 3 ( E : Ω 0 (E,, ) ( E 3/) /!).3. (canonical ensemble) T l ( P r (l,,, T ) p l (,, T ) = g l Z exp{ E l (,, x)/ } (19) g l l T 4 ( : T 1/ 0 1 Z Canonical partitioning function Z (,, T, x) = l g l exp{ E l (,, x)/ } (0) [6] E( U) (1) = 1 Z (,, T, x) g l E l (, ) exp{ E l (, )/ } l E l (, )p l (,, T ) l [ ] 1 Z (,, T, x) = Z (,, T, x) (1/ ),,x [ ] ln{z (,, T, x)} = (1/ ),,x () 19

( E l, p l du = l p l (,, T )de l + l E l dp l (3) E l (, ) E l de l = ( E l ) d du = ( ) El p l d + E l dp l (4) l l 1 1 p l (., T ) (dp l = 0) E l (( ) E l d = 0) 1 du = δw rv + δq rv δw rv = l ( ) El p l d δw rv = P d P = l ( ) El p l 1 = Z (,, T ) l ( ) El exp{ E l (, )/ } (5) P δq rv = l E l dp l p l = exp{ E l (, )/ }/Z (,, T ) (, ) T 5 T canonical ensemble.3.3 (grand canonical ensemble) grand canonical distribution (T µ T µ A A, µ B B, A, B, 0

P r (l,, T ) = 1 Ξ exp [{ E l (, ) + A A µ A } / ] (6) µ A = T S A (7) S (14) grand partition function( )Ξ Ξ = [{ exp E l (, ) + } ] A µ A / A =0 B =0 A (8) ( A, B,...) λ A exp ( µa ) (9) Ξ = (λ A ) A (λ B ) B exp { E l (, )/ } (30) A =0 B =0 Q (, ensemble average)q Q 1 Ξ Q l (, ) exp( E l (, )/ ) exp( A >0 l A µ A / ) (31) grand canonical ensemble 6 ( ) ensemble?.3.4 (*) (*) ( grand canonical distribution [7] grand canonical partition function Ξ(, T, µ) = exp( E l (, )/ ) exp(µ/ ) Z (,, T ) exp(µ/ ) (3) >0 >0 l Z (,, T ) canonical ensemble ensemble average ( ) ln Ξ = µ,t (33) 1

( ) ln Ξ µ,t = 1 Ξ = 1 Ξ ( ) Ξ µ,t >0 Z (,, T ) exp(µ/ ) = 1 (34) ensemble average (31) ensenmble avarage P = ln Ξ (35) [3] 5 11 ( ) ln Ξ T µ = 1 Ξ = 1 Ξ ( ) Ξ >0 l T µ ( 1 ) ( ) El exp( E l / ) exp(µ/ ) T (36) ( ) [ ln Ξ = 1 ( exp(µ/ ) E ) ] l(, ) exp( E l / ) T µ Ξ T >0 (,, T ) (canonical) (5) P (,, T ) = 1 Z [ ( ) El (, ) l l T exp( E l / ) ] (37) (38) ( ) ln Ξ = 1 Z exp(µ/ )P (,, T ) P (39) T µ Ξ >0 ( ) ln Ξ T µ = P ln Ξ = const (40) ln Ξ 35 = ln Ξ

40 (40) n /n 1,, Z(, T, ) = Z( 1, T, /n)z(, T, /n) Z( n, T, /n) (41) grand canonical functionξ ( i Ξ(µ, T. ) = =0 exp(µ/ ) = =0 1 + + n = = [Ξ(µ, T./n)] n 1+ + n= Z( 1, T, /n)z(, T, /n) Z( n, T, /n) (4) { µ } exp ( 1 + + n ) Z( 1, T, /n)z(, T, /n) Z( n, T, /n) ln Ξ(µ, T, ) = n ln Ξ(µ, T, /n) (43) α = 1/n α ln Ξ(µ, T, ) = ln Ξ(µ, T, α ) (44) 7.4 (*).4.1 ( Z Z = (Z 1)! (45) Z 1 1 Z 1 = l ( exp ε ) l (46) 3

grand canonical distribution (30) Ξ = λ (Z 1) = (λz 1 )!! { ( µ )} = exp (λz 1 ) = exp Z 1 exp (47) 33 35 ( ) ln Ξ = µ,t ( ( exp µ = Z 1 µ )),T ( µ ) = Z 1 exp = λz 1 (48) 0 P P = = λz 1 = 0 ln Ξ (49) P ln Ξ.4. (*) 1 Grand canonical function 30 Ξ = 0Z λ (50) = 1 + Z λ 1 33 P (35) = µ ln 1 + 1Z λ (51) = 1 exp( µ ) λ ln 1 + 1Z λ P = ln 1 + 1Z λ (5) 4

ln(1 + x) = x 1 x + 1 3 x3 + ( 1) n 1 1 n xn + λ P P = 1Z λ 1 λ 1Z + 1 λ 3 1Z 3 + (53) = ( Z 1 λ 1 + Z λ + Z 3 λ 3 + ) 1 ( Z1 λ 1 + Z λ + ) 1 ( + Z1 λ 1 + Z λ + )3 + 3 ( = Z 1 λ 1 + Z 1 ) ( Z 1 λ + Z 3 1 Z3 1 Z 1 Z + 1 ) 3 Z3 1 λ 3 + λ λ 51 = λ λ ln 1 + 1Z λ (54) [ ( = λ Z 1 + Z 1 ) ( Z 1 λ 1 + 3 Z 3 1 Z3 1 Z 1 Z + 1 ) ] 3 Z3 1 λ + (55) λ λ ( /Z 1 λ = /Z 1 + a + a 3 3 + (56) ) a = a 3 = [ Z 3 1 8 Z 5 1 P = (Z Z 1 ) (57) ( ) Z Z 1 3 ( ) ] Z 3 Z Z 1 + Z3 1 3 Z 4 1 ( ) ( ) + B + B 3 B = B 3 = [ Z3 Z 3 1 ( Z Z 1 4Z Z 4 1 1 ) + Z Z 1 ( ) 3 + (58) m Z ( m) Z 1 Z 1 Z 1 E (1) ( ) 1 3 ] (59) (60) E (1) = 1 M P + ibrot (61) 5

1 ibrot 1 Z 1 = { ( 1 exp = { exp 1 M P / = (πm )3/ h 3 ) } M P + ibrot / } exp { E vj / } v,j exp { E vj / } Q 1 v,j (6) v, j E () = i=1, { } 1 M P (i) + ibrot (i) + 1 (63) Z Z = exp 1 M P (i) + ibrot (i) + () 1 / (64) i=1, 1 ( ) Q 1 dr 1 dr exp () 1 (r 1 r ) B = 1 ( ) ] dr 1 dr [exp () 1 (r 1 r ) 1 = 1 ( ) ] dr 1 [exp () 1 (r 1) 1 1 B = 4π [ ( ) ] r dr exp () 1 (r) 1 (65) (66) 3 E (3) = 3 i=1 { } 1 M P (i) + ibrot (i) + () (i, j) + (3) (i, j, k) (67) i>j 3 3 (3) (i, j, k) Z 3 Z 3 1 3! Q3 1 dr 1 dr dr 3 exp ( ) () 1 (r 1 r ) + () 1 (r r 3 ) + () 1 (r 1 r 3 ) + (3) (68) 3 (3) 6

.4.3 L-J (*) (*) (r) = (r < σ) ε (σ < r < gσ) (69) 0 (gσ < r) 1 exp( / ) = 1 (r < σ) (exp(ε/ ) 1) x (σ < r < gσ (70) 0 (gσ < r) Boyle B = 0 [ σ B = π r dr 0 = π 3 gσ σ ] xr dr [ σ 3 x ( g 3 σ 3 σ 3)] = π 3 σ3 [ 1 x ( g 3 1 )] = v A [ 1 x ( g 3 1 )] (71) x = 1 g 3 1 = exp( ε ) 1 (7) B ε exp( ) = 1 B g 3 1 + 1 = g3 g 3 1 1 = k ( ) g 3 T B ε ln g 3 1 ε T B = ( k ln ) 1 1 1/g 3 ε = 0 x = 0 Boyle Boyle (73) Mie s potential function Lennard-Jones Potential function(*) Mie s potential function (R; n, m) = λ R n µ R m (74) (n, m) = (1, 6) Lennard-Jones Potential function m=6 (n, m) m = 1 [ ( σ ) 1 ( σ ) ] 6 LJ (R; ε, σ) = 4ε R R (75) 7

ε R = σ (σ) = 0.4.4 (*) ([7] 4 5 6 [1],, (D.A.McQuarrie, J.D.Simon) :,, 000(1997); chapter 16, page 669. [],, (D.A.McQuarrie, J.D.Simon) :,, 000(1997); chapter 7, page 1145. [3],,, 1961. [4] F. Reif, Fundamental of Statistical and Thermal Physics; McGraw-Hill Book Company, ew York, 1965. [5],, (D.A.McQuarrie, J.D.Simon) :,, 000(1997); chapter 3, page 79. [6],, (D.A.McQuarrie, J.D.Simon) :,, 000(1997); chapter 17, page 731. [7] G.C.Maitland, M.Rigby, E.B.Smith, W.A.Wakeham, Intermolecular forces, Claredon Press, 1981. 8