公益社団法人日本都市計画学会都市計画論文集 Vol.53 No 年 10 月 Journal of the City Planning Institute of Japan, Vol.53 No.3, October, 2018 A queueing model for goods d

Similar documents
( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Gmech08.dvi

meiji_resume_1.PDF

LLG-R8.Nisus.pdf

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Note.tex 2008/09/19( )

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

all.dvi


( ) ,

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

数学の基礎訓練I

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


³ÎΨÏÀ

Microsoft Word - 11問題表紙(選択).docx

DVIOUT-fujin

CVaR

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

I II III IV V


I

pdf

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

量子力学 問題

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


DE-resume

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


201711grade1ouyou.pdf

keisoku01.dvi

Part () () Γ Part ,

TOP URL 1

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

TOP URL 1

all.dvi


II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Microsoft Word - 章末問題

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

TOP URL 1

QMII_10.dvi

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

重力方向に基づくコントローラの向き決定方法

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

DVIOUT

Untitled

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

2000年度『数学展望 I』講義録

A 99% MS-Free Presentation

ohpr.dvi

28 Horizontal angle correction using straight line detection in an equirectangular image

Z: Q: R: C: sin 6 5 ζ a, b

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

untitled

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;

数学Ⅱ演習(足助・09夏)

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

2011de.dvi

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

鉄筋単体の座屈モデル(HP用).doc

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

untitled

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

学習内容と日常生活との関連性の研究-第2部-第4章-1


, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

The Physics of Atmospheres CAPTER :

Vol. 48 No. 3 Mar PM PM PMBOK PM PM PM PM PM A Proposal and Its Demonstration of Developing System for Project Managers through University-Indus

液晶の物理1:連続体理論(弾性,粘性)

QMI_09.dvi

Transcription:

A queueing model for goods delivery service by drones In many depopulated rural districts in Japan, it as been ard to run regional retail stores and many of tem ave closed down. As te result, tere as been appeared many residents wo feel difficulties to purcase commodities for teir own. Tey are called kaimono-jakusa in Japan. To solve tis social problem ome delivery services by drones are proposed and several social experiments ave been carried out. In tis time we developed M/G/s queueing models for te drone system depending on te metods of urban operations researc. Finally, we derive te number of drones to acieve te expected delivery efficiency. Keywords : drone, ome delivery service, M/G/s queueing model, distance distribution M/G/s Osamu Kurita 1 food desert 8,1,17) ( ) () (a) (b) (c),6,14,15,16) (1) () (3) 7,9,1,11) 3,4,5) () (5 ) AED( ) M/M/s 19) M/G/s 1),3) ) (Keio University) - 61 -

( ) 16 1 6 1) 5 5g 16 7 17 1 31 18) 3 1) Amazon 16 1 Amazon 5 (.7kg) 3 Domino s Pizza 16 17 1 77 FAA( ) AED AED 1kg 1 s 1 1 Amazon 5 a 1 = ( ), (1) a = ( ), () a = a 1 + a, (3) τ = ( ). (4) t t = a 1 + a + τ = a + τ (5) a 1 a ( a ) λ a + τ/ ( ) w t L ( ) t L = a + τ/ + w. (6) a 1 x f(x) = (x ) (x min x x max ) (7) (x min x max x ) x g(t) v τ = x/v (5) t = a + x/v (8) dx = v dt g(t) g(t) = v ( v ) f (t a) (9) ( a + x min t a + x ) max v v t σ t c x t = a + x, (1) v ( ) σt ( = x x ), (11) v c = σ t t. (1) - 611 -

σ t t x x x s λ µ ρ µ = 1 t, (13) ρ = λ sµ (14) M/G/s M/G/s ( ) s 5) 1 ( ) 3 M/M/s ( 5) ) M/G/s EW (M/G/s) 3,4,5) 5) EW (M/G/s) 1 + c c + 1 c R(s, ρ) EW (M/M/s). (15) c t (1) ρ (14) EW (M/M/s) M/G/s M/M/s EW (M/M/s) { (sρ) s s 1 (sρ) k = s!sµ(1 ρ) k! k= } 1 + (sρ)s (16) s!(1 ρ) (15) R(s, ρ) R(s, ρ) = 1 {1 + ϕ(s, ρ)ψ(s, ρ)}, (17) ϕ(s, ρ) = (1 ρ)(s 1)( 4 + 5s ), (18) [ ψ(s, ρ) = 1 exp 16sρ (s 1) (s + 1)ϕ(s, ρ) ]. (19) (15) M/G/1 M/M/s M/D/s (M/D/s 5) ) s ρ 1 (s, ρ) 1% 4) EL q EL EL q (M/G/s) EL(M/G/s) Little EL q (M/G/s) = λew (M/G/s), () EL(M/G/s) = EL q (M/G/s) + sρ. (1) Π() 4) M/M/s { s 1 } 1 Π (sρ)s (sρ) k + (sρ)s. () s!µ(1 ρ) k! s!(1 ρ) k= 4 4.1 R P ( 1) F x = FP P R O x (i) R F P R O (ii) R < 1 P F x. x f(x) (i) R (ii)r < 7,9,1) (i) R f(x) = x R ( x R ) x πr arccos x + R x (R < x R + ) x F (3) (ii) R < f(x) = x πr arccos x + R (4) x ( R < x + R). x ( ) (i) R x R ( x R ) 1 F (x) = + x {x πr arccos R + x (5) x 1 (δ + R arctan + R x )} x δ (R < x R + ) - 61 -

(ii) R < F (x) = 1 + x {x πr arccos R + x x 1 (δ + R arctan + R x )} x δ ( R < x + R). (6) δ = ( + R + x)( + R x)( R + x)( + R + x). (7) x 7,9,1) (i) R [{ x = 4R ( ) } 7 + E( 9π R R ) { ( ) } ] 4 1 K( R R ), (8) (ii) R < [{ x = 4 ( ) } 7 + E( R 9π R ) { ( ) ( ) } ] R + 3 K( R R ). (9) K(k) 1 E(k) 13) K(k) = E(k) = π/ π/ dθ 1 k sin θ, (3) 1 k sin θ dθ. (31) 1,11) (i) < R x 3 R + R 4 3R 3, (3) (ii) R x + R 8 + R4 19 3. (33) (3) = % = R.3% (33) = R.14% x R x = R +. (34) 4. R λ s R = 3km a v λ 1 s (4..1 ) a v λ 1 km 6km a.15.5.5 v 5km/ ( 3 6km/) 5km/ 1km/ λ 3 / 15 / 6 / R = 3km 3 /km () = π 3 3/ 45 1 (1 ) = 45/ 1 1: 16: 6 λ = 1/6 = 35 / (4..1 ) (4.. ) 1 ( ) km, 1,, 3, 4, 5, 6 (a),(e).5,.1,.15, a.,.5 (b) v km/ 5, 5, 75, 1 (c) λ / 15, 3, 45, 6 (d) ρ 1 ρ 1-613 -

(14) ρ 1 s s min (λ/µ ) λ s min =. (35) µ s s min 4..1 4.1 x x (1) (11) t σ t (13) (14) µ ρ (16) (19) (15) ( EW ) x (8) (9) Fortran C Matematica Matlab Maple Matematica Ver. 11.1.1. (3) (33) (a) (a, v, λ) = (.15, 5km/, 3 /) ( ) 1 = km = 6km 1km ( ) = km () s ( 3) = 1km 8 5 3 1 ( 3 1 ) 1 3 = 4km 1 13 = km 1 3 1 s = km R = 3km = 6km 3km. EW [ ] 6 5 4 3 1 =km =km = 1km =3km =4km =5km =6km 7 8 9 1 11 1 13 14 s [ ] 3 s EW (a, v, λ) = (.15, 5km/, 3 /) (b) a (, v, λ) = (1km, 5km/, 3 /) a 1 3.5.1.15..5 a a a s ( 4) a =.15( 9 ) 8 5 3 1 1 a =.( 1 ) 1 1 a =.1( 6 ) 8 43 EW [ ] 6 5 4 3 1 a=.1 a=.5 a=.15 a=. a=.5 5 6 7 8 9 1 11 1 s [ ] 4 a s EW (, v, λ) = (1km, 5km/, 3 /) - 614 -

(c) v (, a, λ) = (1km,.15, 3 /) v 1 4 5km/ 5km/ 75km/ 1km/ v s ( 5) v = 5km/ 8 5 3 1 1 v = 5km/ 1 1 v = 1km/ 8 54 R a R a v EW [ ] 6 5 4 3 1 v=1km/ v=75km/ v=5km/ v=5km/ 6 7 8 9 1 11 1 s [ ] 5 v s EW (, a, λ) = (1km,.15, 3 /) (d) λ λ λ λ λ (, a, v) = (1km,.15, 5km/) λ 1 5 15 / 3 / 45 / 6 / λ s ( 6) λ = 3 / 8 5 3 1 1 λ = 15 / 1 6 ( 4 ) ( ) λ = 6 / 1 18 8 λ v a EW [ ] 6 5 4 3 1 λ=15 / λ=3 / λ=45 / λ=6 / 5 1 15 s [ ] 6 λ s EW (, a, v) = (1km,.15, 5km/) (e) EW (, s) s EW (, s) ( 7) 7.5 1 5 4 s (a, v, λ) = (.15, 5km/, 3 /) s [ ] 16 14 1 1 8 EW =.5 EW =1 EW = EW =5 1 3 4 5 6 [km] 7 EW (, s) (a, v, λ) = (.15, 5km/, 3 /) - 615 -

( km ) s v a λ 4.. ELq [ ] 4 =km 3 =5km =6km =4km =3km 1 =km =1km 8 1 1 14 s [ ] 8 s EL q (a, v, λ) = (.15, 5km/, 3 /) EL [ ] 4 =km 3 1 =1km =km =3km =4km =5km =6km 8 1 1 14 s [ ] 9 s EL (a, v, λ) = (.15, 5km/, 3 /) s ( 8 9 1) s 4.3 [, 1] u x F (x)( (5) (6)) u = F (x) (36) x x = x (8) x t = a + x /v NTT S 4 Simulation System( ) Ver. 5 (, a, v, λ, s) = (1km,.15, 5km/, 3 /, 9 ) 11 1: 16:(6 ) (1 ) EW = 1 4 11 w = 1 51 EW Π.4.3..1 =km =3km =1km =km =5km =4km =6km [ ] 1 1 8 6 4 w = 1 51 σ w = 1 46. 8 1 1 14 s [ ] 1 s Π (a, v, λ) = (.15, 5km/, 3 /) 4 6 8 1 1 w [ ] 11 (, a, v, λ, s) = (1km,.15, 5km/, 3 /, 9 ) - 616 -

5 ( ) ( ) n 1 i q i i x i Q Q = q 1 + q + + q n (37) T λ = Q/T x = 1 n q i x i, x = 1 n q i x i (38) Q Q i=1 i=1 (1) (11) 4 6 x x min (> ) x min 4 ( ) (4..1 (d) ) ( ) ( ) 1) (17 1 1 ) [ttp://diamond.jp/articles/-/1184] 18 4 5 ) (15) 3) (1988a) M/D/s A Vol.71 A No.3 pp.696 7. 4) (1988b) M/G/s 1988 5 pp. 5) (16) 6) (15) 7) (1986) ( ) pp. 1 55 8) (14) No.1 pp. 116 14 9) (4) 1) (13) 11) (1989) 1 B pp. 38 39 1) (1) Vol. 45, No. 3, pp. 643 648 13) (1956) I () 14) (17) 15) (17) Vol. 59 No. 11 pp. 755 763 16) (17) 17) (14) Vol. 49 No. 3 pp. 993 998 18) Yomiuri Online (17 11 1 ) [ttp://www.yomiuri.co.jp/feature/to33/ 17111-OYT1T518.tml] 18 4 5 19) Boutilier, J.J., S.C. Brooks, A. Janmoamed, A. Byers, J.E. Buick, C. Zan, A.P. Scoellig, S. Ceskes, L.J. Morrison and T.C.Y. Can(17): Optimizing a drone network to deliver automated external defibrillators, Circulation, Vol. 135, pp. 454 465. ) Goodcild, A. and J. Toy(18): Delivery by drone: An evaluation of unmanned aerial veicle tecnology in reducing CO emissions in te delivery service industry, Transportation Researc Part D, Vol. 61, pp. 58 67. 1) Grippa, P., D.A. Berens, F. Wall and C. Bettstetter(18): Drone delivery systems: Job assignment and dimensioning, Autonomous Robots, Vol. 18 [Publised online]. ) Hong, I., M. Kuby and A.T. Murray(18): A rangerestricted recarging station coverage model for drone delivery service planning, Transportation Researc Part C, Vol. 9, pp. 198 1. 3) Murray, C.C. and A.G. Cu(15): Te flying sidekick travelling salesman problem: Optimization of droneassisted parcel delivery, Transportation Researc Part C, Vol. 54, pp. 86 19. - 617 -