653 ノート Code No. 522 DR DQE 1 國友博史 4 服部真澄 2 小山修司 5 岡田陽子 東出林 1 了 6 則夫 3 市川勝弘 7 澤田道人 有限会社 緒言 digital radiography: DR d

Similar documents
07_学術.indd

Flat Panel Detectors Computed Radiography 1415 原著 直接型および間接型 Flat Panel Detectors と Computed Radiography における物理的画質評価を利用した画質同一化の試み 論文受付 2011 年 5 月 22 日

06_学術_関節単純X線画像における_1c_梅木様.indd

1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射

obtained for the liniarization, and was found to have a remarkably wider dynamic range (order of approximately 103) than that of conventional screen/f

1381 総説 ディジタル画像の画質と被ばくを考慮した適正線量の研究 岸本健治 1) 有賀英司 2) 石垣陸太 3) 今井方丈 4) 川本清澄 5) 6) 小林謙一澤田道人 7) 能登公也 8) 中前光弘 9) 10) 東出了 論文受付 2011 年 8 月 9 日 論文受理 2011 年 10 月

564 Table The characteristics of 3 kinds of photostimulable phosphor plates System Type Characteristics A RP-5PM Photostimulable phosphor plate for ph

Accuracy check of grading of XCT Report Accuracy check of grading and calibration of CT value on the micro-focus XCT system Tetsuro Hirono Masahiro Ni

明海大学歯学雑誌 36‐2/11.黒岩

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Microsoft Word - 題名.doc

0700240医用画像24‐1‐ジャーナ/2‐論文ーカラー天野

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

0401489‐工芸‐医用画像22‐1/12[論文]柳田

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

X線分析の進歩36 別刷

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

05_学術1_フィルタ.indd

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

明海大学歯学雑誌 44‐2☆/3.瀬崎

塗装深み感の要因解析

013858,繊維学会誌ファイバー1月/報文-02-古金谷

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

CT 1201 CT 5 CT CT CT CT CT 1. 方法 CT 1-1 CT CT Fig. 1 CT X 5 μm 100 kv 100 μa X L μm CsI CMOS Fig. 1 Educational cone-beam CT system.

202

Vol. No. Honda, et al.,

06_学術.indd

Microsoft Word - mitomi_v06.doc

IR0036_62-3.indb

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

総 説 6 6 PIMs P S J 7

理学療法検査技術習得に向けた客観的臨床能力試験(OSCE)の試行

„´™Ÿ/’£flö

原稿.indd

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)


Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

untitled

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

28 Horizontal angle correction using straight line detection in an equirectangular image

動くレントゲン

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)


The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

04_学術_特発性側彎症患者.indd

IEC :2014 (ed. 4) の概要 (ed. 2)

06_学術_技師の現状および将来需要_武藤様1c.indd

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

JJRM5005/04.短報.責了.indd

Quantitative Relationship between SAR and Temperature Rise inside Eyeball in a Realistic Human Head Model for 1.5 GHz-Microwave Exposure Kiyofumi Taka

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

yasi10.dvi

02石出猛史.indd

[2] ATMUKN [3] (ATMU ATMUKN)[4] ( ) X tr = f photo photo + f incoh incoh + f pair pair = E h 0 (2) h 0 E 1 f photo =1; X h 0 f incoh f pair =1;


Fig. 1 Trends of TB incidence rates for all forms and smear-positive pulmonary TB in Kawasaki City and Japan. Incidence=newly notified cases of all fo

03_学術.indd


J. Jpn. Inst. Light Met. 65(6): (2015)


untitled

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

2 The Bulletin of Meiji University of Integrative Medicine 3, Yamashita 10 11

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M

_念3)医療2009_夏.indd

日立金属技報 Vol.34

SEJulyMs更新V7

320 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /., No.1, -,* -,/ (,**1) 8 * ** *** * ** *** E#ect of Superheated Steam Treatment on the Preservation an

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

スライド 1

2 14 The Bulletin of Meiji University of Integrative Medicine 7 8 V ,15 16,17 18,19 20,21 22 Visual analogue scale VAS Advanced trai

2 1 ( ) 2 ( ) i

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

藤村氏(論文1).indd

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

474 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No.3,.1..2* (,**0) 24 Measurement of Deterioration of Frying Oil Using Electrical Properties Yoshio

220 28;29) 30 35) 26;27) % 8.0% 9 36) 8) 14) 37) O O 13 2 E S % % 2 6 1fl 2fl 3fl 3 4

0801391,繊維学会ファイバ12月号/報文-01-西川

1..FEM FEM 3. 4.

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6


橡

RTM RTM Risk terrain terrain RTM RTM 48

52-2.indb

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

04_学術.indd

75 Author s Address: Possibility of Spatial Frequency Analysis of the Three-dimensional Appearance and Texture of Facial Skin

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2


Transcription:

653 ノート 2013 9 17 2014 5 29 Code No. 522 DR DQE 1 國友博史 4 服部真澄 2 小山修司 5 岡田陽子 1 2 3 東出林 1 了 6 則夫 3 市川勝弘 7 澤田道人 4 5 6 7 有限会社 緒言 digital radiography: DR detective quantum efficiency: DQE DQE DR q X signal-to-noise ratio: SNR 1, 2 SNR DQE DR X Investigation of Measurement Accuracy of Factors Used for Detective Quantum Efficiency Measurement in Digital Radiography Hiroshi Kunitomo, 1 Shuji Koyama, 2 Ryo Higashide, 1 Katsuhiro Ichikawa, 3 Masumi Hattori, 4 Yoko Okada, 5 Norio Hayashi, 6 and Michito Sawada 7 1 Department of Central Radiological Technology, Nagoya City University Hospital 2 Radiological Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine 3 Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University 4 Department of Radiology, Tokai Memorial Hospital 5 Department of Radiological Technology, Anjo Kosei Hospital 6 School of Radiological Technology, Gunma Prefectural College of Health Sciences 7 Mutsuda Shoukai Corporation, Ltd. Received September 17, 2013; Revision accepted May 29, 2014 Code No. 522 Summary In the detective quantum efficiency (DQE) evaluation of detectors for digital radiography (DR) systems, physical image quality indices such as modulation transfer function (MTF) and normalized noise power spectrum (NNPS) need to be accurately measured to obtain highly accurate DQE evaluations. However, there is a risk of errors in these measurements. In this study, we focused on error factors that should be considered in measurements using clinical DR systems. We compared the incident photon numbers indicated in IEC 62220-1 with those estimated using a Monte Carlo simulation based on X-ray energy spectra measured employing four DR systems. For NNPS, influences of X-ray intensity non-uniformity, tube voltage and aluminum purity were investigated. The effects of geometric magnifications on MTF accuracy were also examined using a tungsten edge plate at distances of 50, 100 and 150 mm from the detector surface at a source-image receptor distance of 2000 mm. The photon numbers in IEC 62220-1 coincided with our estimates of values, with error rates below 2.5%. Tube voltage errors of approximately ±5 kv caused NNPS errors of within 1.0%. The X-ray intensity non-uniformity caused NNPS errors of up to 2.0% at the anode side. Aluminum purity did not affect the measurement accuracy. The maximum MTF reductions caused by geometric magnifications were 3.67% for 1.0-mm X-ray focus and 1.83% for 0.6-mm X-ray focus. Key words: detective quantum efficiency (DQE), measurement accuracy, incident photon numbers, normalized noise power spectrum (NNPS), modulation transfer function (MTF) *Proceeding author

654 3 5 International Electrotechnical Commission IEC 2003 IEC62220-1IEC DQE 3 5 IEC 6 DQE presampled modulation transfer function MTF normalized noise power spectrum NNPS DQE(u) Dobbins Siewerdsen X 7, 8 NNPS DR 9, 10 11 12 IEC presampled MTF 13, 14 15, 16 presampled MTF X DQE(u) 1. 方法と使用機器 X IEC 1 μgy mm -2 μgy -1 X NNPS NNPS presampled MTF 1-1 1-1-1 IEC IEC RQA5 4 X X X Philips OPTIMS50 SRO2550 Siemens AXION Luminos drf Luminos UD150B DK-85 UD150L DK-85 Radcal 9015 10X5-6 Fig. 1 a X 2000 mm 99.5 IEC 7.1 mmal Fig. 1 a 73 kv X Fig. 1 b RAMTEC413 CdTe 0.1 mm 0.05 mm X CdTe 2000 mm 40 ma 20 μgy/s X 1.0 10 4 X X electron gamma shower Ver.5 17 EGS5 Fig. 1 c X 2000 mm 1.0 cm 2 1.0 10 9 X 18 0.2 kev 0.03

655 Fig. 1 Setup for measurement and calculation of photon number. (a) Geometry for defined X-ray beam quality (RQA5; International Electrotechnical Commission), (b) Geometry for measurement of X-ray spectrum, (c) Geometry for Monte Carlo simulation K air=ψ (μ tr/ρ) air 1 K air Ψ(µ tr/ρ) air (µ tr/ρ) air (µ en/ρ) air 2 K air Ψ( E ) ( µ / ρ) en 2 air 3 K Ψ( E ) ( μ / ρ) air en air 3 3 1 μgy 3, 5 IEC 30174 mm -2 μgy -1 1-1-2 RQA5 X AXION Luminos drf RQA5 73 kv 68 70 71.5 73 75 79 kv RAMTEC413 X 1-1-1 0.4 mm 0.2 mm 1-1-3 RQA5 IEC61267 99.9 H4000 19 99.5 A 1050 RAMTEC413 1-1-1 1-2 NNPS 1-2-1 X NNPS X IEC

656 source-image receptor distance SID 1500 mm NNPS 125 125 mm 3, 5 X SNR SNR 2 NNPS NNPS X X X UD150B DK-85 Konica Minolta flat panel detector FPD AeroDR0.175 mm SID 1500 mm RQA5 73 kv 40 μc/kg 400 400 mm 64 N=64 X ±179 mm 64 region of interest ROI 256 256 420 NNPS 22 mm 128 NNPS NNPS 1-2-2 RQA5 RQA5 73 kv 68 70 71 73 75 77 79 kv 2.58 10-7 C/kg 1-2-1 NNPS 768 768 7 X 20 NNPS exposure NNPS exposure NNPS 12, 21 NNPS RQA5 73 kv exposure NNPS 1-2-3 NNPS 1-1-3 RQA5 99.9 99.5 21 mm exposure NNPS 1-2-2 1-3 MTF 1-3-1 X computed radiography CR X 22, 23 X Philips SRO 2550 1.0 mm 0.6 mm CR Konica Minolta Regius170 87.5 μm 1-3-2 IEC 1 mm SID 2000 mm d 0 50 100 150 mm 1.000 1.026 1.053 1.081 15 line spread function LSFpresampled MTF 1-3-1 X CR IEC RQA5 MTF α 4 d α = fs l d 4 fs l α d 0 mm f MTF p(f) 5 sin( αfπ) p( f ) = 5 αfπ 2. 結果 2-1 2-1-1 IEC 4 X Table 1 IEC

657 Table 1 Calculation data of photon number using EGS5 and error rate with photon numbers of 30174 mm -2 µgy -1 at RQA5 X-ray equipment Tube voltage (kv) Photon number (mm -2 μgy -1 ) Difference from IEC (%) Philips 73 30889 2.370 OPTIMS50/SRO2550 Siemens 73 30929 2.502 AXION Luminos drf Shimadzu 72 30393 0.726 UD150B/DK-85 Shimadzu 75 30213 0.129 UD150L/DK-85 Table 2 Calculation data of photon number: variation in tube voltage/purity of aluminum filter X-ray equipment Tube voltage Purity of Aluminum filter Photon number Difference from IEC (kv) (%) (mm -2 μgy -1 ) (%) Siemens 68 99.5 30459 0.945 AXION Luminos drf 70 30896 2.393 71.5 31247 3.556 73 31526 4.481 75 31873 5.631 79 32402 7.384 73 99.9 31498 4.388 +2.50 +0.13 2-1-2 RQA5 73 kv Table 2 IEC 73 kv +4.48 +7.38 2-1-3 RQA5 73 kv Table 2 99.9 +4.39 99.5 +4.48 2-2 NNPS 2-2-1 X NNPS Fig. 2 NNPS 1.47 cycles/mm X Fig. 2 1.47 cycles/mm IEC SID 1500 mm 125 125 mm 2.0 1.3 Fig. 2 The error ratio of NNPS above 1.47 cycles/mm by the X-ray quantum number distribution to NNPS value at the center of the irradiated field. 2-2-2 exposure NNPS Fig. 3

658 Fig. 3 Error in NNPS from RQA5 due to variation in tube voltage. Fig. 4 Exposure NNPS due to difference in purity of aluminum filter. exposure NNPS -5 kv +6 kv ±1 2-2-3 exposure NNPS Fig. 4 99.5 NNPS 5 2-3 MTF CR X 1.0 mm 1.49 mm 1.15 mm 0.6 mm 0.999 mm 0.768 mm MTF Fig. 5 MTF Fig. 6 MTF MTF MTF 1.000 1.026 1.053 1.081 1.0 cycle/mm MTF 0.32 1.76 3.67 0.230 1.03 1.83 Fig. 5 Result of presampled MTF from two focal spot sizes. 2.0 cycles/mm MTF 3.09 6.69 11.7 0.243 2.81 5.33 Table 3 1 100 mm 3 cycles/mm 3.6 3. 考察 3-1 IEC RQA5

659 a b Fig. 6 Influence of presampled MTF on geometric magnification. (a) Large focal spot, (b) Small focal spot Table 3 Comparison of theoretical values and measured values in MTF reduction rate due to geometric magnification and blurring with effective focal spot size (a) Large focal spot Object-to-detector distance (mm) 50 100 150 Spatial frequency Theoretical Measured Theoretical Measured Theoretical Measured (mm -1 ) value value value value value value 0.5 0.999 0.999 0.997 0.995 0.994 0.989 1.0 0.998 0.997 0.990 0.982 0.976 0.963 2.0 0.990 0.969 0.960 0.933 0.906 0.883 3.0 0.978 0.958 0.910 0.879 0.796 0.785 (b) Small focal spot Object-to-detector distance (mm) 50 100 150 Spatial frequency Theoretical Measured Theoretical Measured Theoretical Measured (cycles/mm) value value value value value value 0.5 1.000 0.999 0.999 0.998 0.997 0.994 1.0 0.999 0.998 0.995 0.990 0.989 0.982 2.0 0.996 0.997 0.982 0.972 0.957 0.947 3.0 0.990 0.990 0.959 0.950 0.905 0.910 4 X IEC +2.5 Fig. 7 7 IEC RQA5 Table 2 IEC IEC 99.9 99.5

660 Fig. 7 X-ray energy spectra for two different beam collimation sizes. 3-2 NNPS IEC SID 1500 mm NNPS 125 125 mm NNPS 2 IEC 125 125 mm RQA5 NNPS ±1.0 exposure NNPS IEC 99.9 99.5 DQE 3-3 MTF DR 5 10 cm SID 1500 mm 2000 mm SID 5 10 15 cm 3.75 cm 7.50 cm 11.25 cm 7.3 cm 1.0 cycle/mm 1.76 2.0 cycles/mm 6.69 MTF 1.0 cycle/mm 1.03 2.0 cycles/mm 2.81 MTF MTF X 2000 mm DQE MTF MTF 5 DQE 10 DQE DQE MTF 4. 結論 X DQE 4 X IEC FPD RQA5 ±5 kv NNPS 1 NNPS IEC X DQE MTF 23 DQE

661 参考文献 1 Dainty JD, Shaw R. Image Science. New York: Academic Press, 1974. 2 Cunningham IA. 2, Applied linear-systems theory. Handbook of Medical Imaging Vol. 1. SPIE Press, Bellingham, 2000: 79-160. 3 International Electrotechnical Commission: 62220-1. Medical electrical equipment-characteristics of digital X-ray imaging devices part1: Determination of detective quantum efficiency, ed.1.0, 2003. 4 International Electrotechnical Commission: 62220-1-2. Medical electrical equipment-characteristics of digital X-ray imaging devices Part 1-2: Determination of the detective quantum efficiency-detectors used in mammography, ed.1.0, 2007. 5 International Electrotechnical Commission: 62220-1-3. Medical electrical equipment-characteristics of digital X-ray imaging devices Part 1-3: Determination of the detective quantum efficiency Detectors used in dynamic imaging, 2008. 6 International Electrotechnical Commission: 61267. Medical diagnostic X-ray equipment-radiation conditions for use in the determination of characteristics, ed2.0. 2005. 7 Dobbins JT, Ergun DL, Rutz L, et al. DQE(f) of four generations of computed radiography acquisition devices. Med Phys 1995; 22(10): 1581-1593. 8 Siewerdsen JH, Antonuk LE, el-mohri Y, et al. Signal, noise power spectrum, and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology. Med Phys 1998; 25(5): 614-628. 9 Neitzel U, Günther-Kohfahl S, Borasi G, et al. Determination of the detective quantum efficiency of a digital x-ray detector: comparison of three evaluations using a common image data set. Med Phys 2004; 31(8): 2205-2211. 10 Samei E, Flynn MJ. An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys 2003; 30(4): 608-622. 11 2010; 66(7): 734-742. 12 Dobbins JT, Samei E, Ranger NT, et al. Intercomparison of methods for image quality characterization. II. Noise power spectrum. Med Phys 2006; 33(5): 1466-1475. 13 Morishita J, Doi K, Bollen R, et al. Comparison of two methods for accurate measurement of modulation transfer functions of screen-film systems. Med Phys 1995; 22(2): 193-200. 14 Samei E, Ranger NT, Dobbins JT 3rd, et al. Intercomparison of methods for image quality characterization. I. Modulation transfer function. Med Phys 2006; 33(5): 1454-1465. 15 presampled MTF 2008; 64(4): 417-425. 16 Buhr E, Günther-Kohfahl S, Neitzel U. Accuracy of a simple method for deriving the presampled modulation transfer function of a digital radiographic system from an edge image. Med Phys 2003; 30(9): 2323-2331. 17 Hirayama H, Namito Y, Bielajew AF, et al. The EGS5 CODE SYSTEM, SLAC Report number: SLAC-R-730. 2007. 18 Haba T, Kondo S, Hayashi D, et al. Accuracy validation of incident photon fluence on DQE for various measurement conditions and X-ray units. Radiol Phys Technol 2013; 6(2): 423-430. 19H4000 2006. 20 X 2010. 21 Samei E, Flynn MJ. An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys 2003; 30(4): 608-622. 22Z4704 X 2005. 23 X 2004; 60(8): 1132-1138. 467-8602 1