2018 : msjmeeting-2018sep-11i001 WKB ( ) Eynard-Orantin WKB.,, Schrödinger WKB Voros, Painlevé (τ- ). 1. WKB,, WKB Voros WKB, Painlevé WKB. WKB, [ ],.

Similar documents
Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

takei.dvi

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] =

1

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

Twist knot orbifold Chern-Simons

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

untitled

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2


untitled

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

コホモロジー的AGT対応とK群類似

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

xia2.dvi

meiji_resume_1.PDF

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1


. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

( ) Loewner SLE 13 February

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W


2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

第5章 偏微分方程式の境界値問題

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Untitled

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

日本数学会・2011年度年会(早稲田大学)・総合講演

構造と連続体の力学基礎

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

prime number theorem

i 18 2H 2 + O 2 2H 2 + ( ) 3K

応力とひずみ.ppt

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

dvipsj.8449.dvi

30

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

−g”U›ß™ö‡Æ…X…y…N…g…‰

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

2017 : msjmeeting-2017sep-02i004 Euler-Bernoulli (elastica) Elastica of Euler-Bernoulli and its generalization: from sprout of elliptic functions to r

平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

L(A) l(a)

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

JFE.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)


1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

Anderson ( ) Anderson / 14


II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

C 1 -path x t x 1 (f(x u), dx u ) rough path analyi p-variation (1 < p < 2) rough path 2 Introduction f(x) = (fj i(x)) 1 i n,1 j d (x R d ) (n, d) Cb

液晶の物理1:連続体理論(弾性,粘性)

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like


D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

RIMS98R2.dvi

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

main.dvi

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

( ) (, ) ( )

Transcription:

018 : msjmeeting-018sep-11i001 WKB ( Eynard-Orantin WKB.,, Schrödinger WKB Voros, Painlevé (τ-. 1. WKB,, WKB Voros WKB, Painlevé WKB. WKB, [ ],. 1.1. WKB Voros Voros ([V] WKB (exact WKB analysis, ( 1 Schrödinger (ħ d dx Q(x ψ(x, ħ = 0 (1.1, ħ ( η = ħ 1. ħ (1.1 WKB ( 1 x 1 ψ(x, ħ = exp Q(x dx ħ 4 log Q(x + x ħ m S m (x dx (1. m=1 Borel. Stokes x- WKB Borel, exact WKB., Q(x. WKB S(x, ħ = d log ψ(x, ħ/dx = m= 1 ħm S m (x S 1 (x = Q(x, S 1 (xs m+1 (x + m 1 +m =m m 1,m 0 S 1 (xs 0 (x + ds 1(x dx S m1 (xs m (x + ds m(x dx = 0, (1.3 = 0 (1.4 ( :16K17613, 16H06337, 16K05177, 17H0617 010 Mathematics Subject Classification: 34M60, 34M55, 81T45 WKB, Voros, Painlevé, 464-860 e-mail: iwaki@math.nagoya-u.ac.jp

,. Q(x, Q(x., y = Q(x Riemann Σ. Σ (1.1, x-., m 1, Q(x S m (x., Q(x γ V γ (ħ = γ ( S(x, ħ ħ 1 S 1 (x S 0 (x dx = ħ m m=1 γ S m (x dx (1.5 (1.1 (γ Voros. Voros, WKB : : WKB, (1.1 (Stokes ([, ]., Σ α S(x, ħdx (α H 1(Σ; Z Borel,. ( Voros, Voros,. Stokes : Stokes, Borel WKB Borel ([V, DDP]. Stokes Stokes. ( 1.1 λ. Stokes Voros Borel ( [AKT, KoT]., Stokes WKB ([IN], Voros exp(v γ Borel. 1.1 Q(x, (1.1 Weber : ( ( ħ d x dx 4 λ ψ(x, ħ = 0. (1.6 λ C. (1.4 : S 1 (x = 1 x x 4λ, S 0 (x = (x 4λ, S 1(x = 3x 8λ 4(x 4λ, 5/ S (x = 3x(x + 6λ (x 4λ 4, S 3(x = 97x4 + 98x λ + 116λ 16(x 4λ 11/. S 1 (x x. λ 0, Σ P 1 x = 1,

Weber (1.6 Voros ([T]: 1 ( V (ħ = S(x, ħ ħ 1 ( 1 m 1B m S 1 (x S 0 (x dx = m(m 1, B m Bernoulli,. t e t 1 = m=0 m=1 B m m! tm. ( m 1 ħ. (1.7 λ Voros (1.7 Borel, Weber (1.6 x = Stokes., (1.7 Borel (alien derivative, Stokes exact. (, [IN] A 1 -. 1.. Painlevé -, (1.1 ([ ], Painlevé WKB ([KT], [, 4]., Painlevé I (P I : ħ d q dt = 6q + t, [ħ x ħ x q x ( 4x 3 + tx + H + ħ p ] ψ(x, t, ħ = 0 (1.8 x q [ ħ ( t 1 ħ ] (x q x p ψ(x, t, ħ = 0 (1.9 ( p = ħdq/dt, H = p / q 3 tq. -, (1.8 WKB Stokes, Painlevé -, Stokes, WKB, Painlevé Stokes. [I] Painlevé ( Voros Stokes,, - 1., WKB, Painlevé τ-. I, (P I q(t, ħ ħ d log τ(t, ħ = q(t, ħ (1.10 dt τ-. (q Wierstrass -, σ- τ-. 01 Lisovyy - ([GIL],. 1 018 (,. Lisovyy Painlevé VI Painlevé τ-. τ- ( ([N1, N], (P I, -.

1.3., WKB Voros, Painlevé WKB., WKB,, (topological recursion WKB.,, Eynard Orantin, (.. WKB 01 [GS, DM, BE]., [IKoT], Voros, (,., (1.7 Bernoulli, Harer-Zagier ([HZ] Riemann Euler Bernoulli (.5. Painlevé, [IM, IMS, IS], 0-3 q(t, ħ = m=0 ħm q m (t τ- ( τ(t, ħ = exp ħ g F g (t (1.11 g=0 (Lyon Oliver Marchal, Virginia Axel Saenz., WKB (1.4... Eynard-Orantin [EO1], Riemann C x, y, C {W g,n (z 1,..., z n } g 0,n 1 {F g } g 0., (C, x, y, W g,n, F g., W g,n F g (.4,. [EO],..1.,..1 ([BE, Definition.1]; cf. [EO1, 3] Riemann C, x, y : C P 1, dx dy (C, x, y. 3. -.

C = P 1, z, x, y z., R x : C P 1 (dx x,., r R z (x(z = x( y(z y(.,.. ([EO1, Definition 4.] (C, x, y, C W g,n (z 1,..., z n (g 0, n 1, (g, n- :, W 0,1 (z 1 = y(z 1 dx(z 1, (.1 dz 1 dz W 0, (z 1, z = (z 1 z, (. W g,n+1 (z 0, z 1,..., z n = [ Res K r(z 0, z W g 1,n+1 (z,, z 1,..., z n (.3 z=r r R + g 1 +g =g I J={1,...,n} K r (z 0, z = 1 w=z W w= 0,(w, z 0 (y(z y(dx(z ] W g1,1+ I (z, z I W g,1+ J (, z J. (.4, (.3 {1,..., n} (, I = {i 1, i,..., i m } {1,..., n} (i 1 < i < < i m W g,m+1 (z, z I = W g,m+1 (z, z i1,..., z im., (g 1, I = (0, (g, J = (0,. 1 C = P 1, C (H 1 (C, Z W 0, (z 1, z Bergman ([EO1, 3.1.5]. (. P 1 Bergman., Riemann (.1, χ = g + n. W g,n ([EO1]: W g,n z i C, g + n 1 C \ R. (, x(z, W g,n. W g,n z 1,..., z n (. x(z y(z λ, ( λ- W g,n λ., λ, W g,n λ ([EO1, 5].

z 0 z 1 z z n W g,n+1 (z 0, z 1,..., z n z 0 z z z 0 z1 z z n z 1 z z n K(z, z 0 W g 1,n+ (z,, z 1,..., z n K(z, z 0 W g1,1+ I (z, z I1 W g,1+ J (, z I.1: Riemann..3 ([EO1, Definition 4.3] (C, x, y, F g C ( g : F g = 1 g r R Res Φ(zW g,1(z (g. (.5 z=r, z o C \ R, Φ(z = z z o y(zdx(z. g = 0, 1 F 0, F 1, ([EO1, 4.., 4..3]. F g,, dx dy ([EO1, Section 7]. F g F (ħ = ħ g F g (.6, Z = exp(f..4 Airy g=0 x(z = z, y(z = z (.7 (R = {0, }, = z, g + n 1 W g,n (z 1,..., z n = 1 3g 3+n d 1 + +d n =3g 3+n τ d1,..., τ dn g,n n i=1 (d i 1!! dz z d i+1 i (.8 i ([E]., τ d1,..., τ dn g,n Q (1 {pt} Gromov- Witten, g Riemann M g,n ([Kon]: τ d1,..., τ dn g,n = M g,n c 1 (L 1 d1 c 1 (L n dn. Airy : F g = 0 (g.

.5 Weber x(z = λ 1/ (z + z 1, y(z = λ1/ (z z 1 (.9 (λ C, R = {1, 1}, = z 1, g., F g = χ(m g λ g (.10 χ(m g = B g g(g (.11 g Riemann Euler, Bernoulli ([HZ]..., WKB (quantum curve ([GS, DM, BE]., [BE] admissibile, W g,n WKB, Riemann (. WKB., Airy..6 ([Z] Airy (.7 W g,n, [ 1 z ψ(x, ħ = exp W 0,1(z + 1 z z( W 0, (z 1, z dx(z 1dx(z ħ (x(z 1 x(z + ħ g +n z n! g 0,n 1 g +n 1 z W g,n (z 1,..., z n ] (.1 z=z(x ( z(x = x, x : C P 1, Airy (ħ d dx x ψ = 0 (.13 WKB., WKB (1.4 (.3. Airy WKB, ((.8,,., ψ(x, ħ (.13 y x = 0 Airy (.7., (.1 (.13 4., WKB Voros,?.,,. 4, (.1 Schrödinger Q = Q 0 (x+ħq 1 (x+ħ Q (x+ ħ-. [BE] admissibility.

3. Voros [IKoT], : (ħ d Q(x, ħ ψ = 0, Q(x, ħ = x + 4λ ħ 1 dx 4x 4x. (3.1 Bessel Schrödinger, Bessel. ([IKoT] Gauss,. λ. y = (x + 4λ /(4x, x(z = 4λ (z 1, y(z = z 4λ(z 1 (3., Bessel. (R = {0, }, = z. W g,n F g, Bessel (3.., : 3.1 ([IKoT, 4] (a [ 1 ψ(x, ħ = exp ħ z W 0,1(z + 1 z z( W 0, (z 1, z dx(z 1dx(z (x(z 1 x(z + z g 0,n 1 g +n 1 ħ g +n n! n Bessel (3.1 WKB. z W g,n (z 1,..., z n ] (3.3 z=z(x (b Bessel (3.1 Σ x = 0 Bessel (3.1 Voros V (λ, ħ, Bessel (3. F (λ, ħ = g=0 ħg F g (λ, : V (λ, ħ = F (λ + ħ, ħ F (λ ħ, ħ ħ 1 F 0(λ λ. (3.4 (c Bessel (3. 3 F (λ + ħ, ħ F (λ, ħ + F (λ ħ, ħ = log (56λ (λ ħ λ (3.5., F g : B g F g (λ = g(g 1 (λ g (g (3.6 (3.3, (3.4,., (3.6

. Gauss ( λ 0, λ 1, λ { B g 1 F g = g(g (λ 0 + λ 1 + λ + 1 g (λ 0 + λ 1 λ + 1 g (λ 0 λ 1 + λ g } 1 + (λ 0 λ 1 λ 1 g (λ 0 1 g (λ 1 1 (g g (λ g Voros Bernoulli., Voros, (, Voros. 4. Painelvé τ- Painlevé τ- WKB,, WKB, τ- [IM, IS, IMS]. (P I, [IS]. (P I 0- q(t, ħ = m=0 ħm q m (t (1.8 y = 4(x q 0 (t (x + q 0 (t (4.1 ( q 0 (t = t/6 0 5. x(z = z q 0 (t, y(z = z(z 3q 0 (t (4. (, Painlevé t, W g,n F g., t = 0 dx dy,, t 0. (, t = 0 [KT] (P I.,. 4.1 ([IS] (a [ 1 ψ(x, t, ħ = exp ħ z W 0,1(z + 1 z z( W 0, (z 1, z dx(z 1dx(z (x(z 1 x(z + z g 0,n 1 g +n 1 ħ g +n n! n z W g,n (z 1,..., z n ] (4.3 z=z(x, 0- (1.8, (1.9 WKB. 5 1, (4.1. Painlevé, 0-0. [KT].

(b (4. ( exp(f (t, ħ = exp g=0 ħ g F g (t (4.4 (P I τ-., : q(t, ħ = ħ d F (t, ħ (4.5 dt (a, (P I (1.8., q p ħ-, (1.8 ħ-. Painlevé,. [BCD], admissible, Painlevé ħ-. - - ([JMU], Painlevé (1.8, (1.9 τ-,, (a τ- (b., (b [IMS] 6 Painlevé.,, 0-, Painlevé 1,., Voros Painlevé,., Riemann-Hilbert,., ( WKB exact Stokes,,. [AKT] Aoki, T., Kawai, T. and Takei, Y., The Bender-Wu analysis and the Voros theory, II, Adv. Stud. Pure Math. 54 (009, Math. Soc. Japan, Tokyo, 009, pp. 19 94. [BCD] Bouchard, V., Chidambaram, N. and Dauphinee, T., Quantizing Weierstrass; arxiv:1610.005. [BE] Bouchard, V. and Eyanard, B., Reconstructing WKB from topological recursion, Journal de l Ecole polytechnique Mathematiques, 4 (017, pp. 845 908. [DDP] Delabaere, E., Dillinger, H. and Pham, F., Résurgence de Voros et périodes des courves hyperelliptique, Annales de l Institut Fourier, 43 (1993, 163 199. [DM] Dumitrescu, O. and Mulase, M., Lectures on the topological recursion for Higgs bundles and quantum curves; arxiv:1509.09007. [E] Eynard, B., Intersection numbers of spectral curves; arxiv:1104.0176. [EO1] Eynard, B. and Orantin, N., Invariants of algebraic curves and topological expansion, Communications in Number Theory and Physics, 1 (007, pp. 347 45; arxiv:mathph/070045. [EO] Eynard, B. and Orantin, N., Topological recursion in enumerative geometry and random matrices, J. Phys. A: Math. Theor. 4 (009, 93001 (117pp.

[GIL] Gamayun, O., Iorgov, N. and Lisovyy, O., Conformal field theory of Painlevé VI, JHEP 10 (01, 038; arxiv:107.0787. [GS] Gukov, S. and Su lkowski, P., A-polynomial, B-model, and quantization, JHEP, 01 (01, 70. [HZ] Harer, J. and Zagier, D., The Euler characteristic of the moduli space of curves, Invent. Math., 85 (1986, 457 485. [I] Iwaki, K. Parametric Stokes phenomenon for the second Painlevé equation with a large parameter, Funkcial. Ekvac., 57 (014, 173 43. [IKoT] Iwaki, K., Koike, T. and Takei, Y., Voros Coefficients for the Hypergeometric Differential Equations and Eynard-Orantin s Topological Recursion; arxiv:1805.10945. [IM] Iwaki, K. and Marchal, O., Painlevé equation with arbitrary monodromy parameter, topological recursion and determinantal formulas, Ann. Henri Poincaré, 18 (017, 581 60; arxiv:1411.0875. [IMS] Iwaki, K., Marchal, O. and Saenz, A., Painlevé equations, topological type property and reconstruction by the topological recursion, J. Geom. Phys., 14 (018, 16 54; arxiv:1601.0517. [IN] Iwaki, K. and Nakanishi. T., Exact WKB analysis and cluster algebras, J. Phys. A: Math. Theor. 47 (014, 474009. [IS] Iwaki, K. and Saenz, A., Quantum Curve and the First Painlevé Equation, SIGMA., (1, 016; arxiv:1507.06557. [JMU] Jimbo, M., Miwa, T. and Ueno, K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and τ-function, Phys. D (1981, 306 35. [KT] Kawai, T. and Takei, Y., WKB analysis of Painlevé transcendents with a large parameter. I, Adv. Math. 118 (1996, 1 33. [KoT] Koike, T. and Takei, Y., On the Voros coefficient for the Whittaker equation with a large parameter Some progress around Sato s conjecture in exact WKB analysis, Publ. RIMS, Kyoto Univ. 47 (011, pp. 375 395. [Kon] Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys., 147 (199, 1 3. [N1] Nagoya, H., Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations, J. Math. Phys. 56 (015, 13505; arxiv:1505.0398. [N] Nagoya, H., Remarks on irregular conformal blocks and Painlevé III and II tau functions; arxiv:1804.0478. [T] [V] [Z] Takei, Y., Sato s conjecture for the Weber equation and transformation theory for Schrödinger equations with a merging pair of turning points, RIMS Kôkyurôku Bessatsu, B10 (008, pp. 05 4. Voros, A., The return of the quartic oscillator The complex WKB method, Ann. Inst. Henri Poincaré, 39 (1983, pp. 11 338. Zhou, J., Intersection numbers on Deligne-Mumford moduli spaces and quantum Airy curve; arxiv:106.5896. [ ],,, 009. [ ],.,,, 1998. (English version: Kawai, T. and Takei. Y., Algebraic Analysis of Singular Perturbation Theory, American Mathematical Society, Translations of Mathematical Monographs, vol. 7. 005. [ ],,,,, 750. 1991, PP. 43 51 (.