1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

Similar documents
Mott散乱によるParity対称性の破れを検証

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

QMII_10.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

日本内科学会雑誌第102巻第4号

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6


6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

II III II 1 III ( ) [2] [3] [1] 1 1:


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

PowerPoint Presentation


Note.tex 2008/09/19( )

untitled

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

untitled

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

プログラム

main.dvi

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

B

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4


( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

0

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

Part () () Γ Part ,

I II III IV V

201711grade1ouyou.pdf

本文/目次(裏白)

gr09.dvi

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a

0201

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

arxiv: v1(astro-ph.co)

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21


2000年度『数学展望 I』講義録

1 2

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

総研大恒星進化概要.dvi

koji07-01.dvi

Donald Carl J. Choi, β ( )

1 (1) (2)

- 2 -


PR映画-1

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル



Microsoft Word - 章末問題

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

(1) (2) (3) (4) (5) 2.1 ( ) 2

TOP URL 1

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0


微粒子合成化学・講義

微粒子合成化学・講義

放射線化学, 92, 39 (2011)

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

untitled

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

. µ, v i E i p i µ µv i p i p f µv i, momentum tansfe q p p i p f q p i cos Θ) 4p i sin Θ/) q p i sinθ/) p f p i q z ) q F z dt φ φ z z e cos ρdt d L

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

3-2 -

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ


1 Tokyo Daily Rainfall (mm) Days (mm)

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

抄録/抄録1    (1)V

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.


68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B

1 (1) (2) 2

Transcription:

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 14 m) ( 10 10 m) 2., 3 1 =reaction-text20181101b.tex 2 ( ) 3 4 ( ) okamoto.ryoji.munakata at gmail.com ( at @ 3 parity ( ) ( ) ψ (x, y, z), ψ = ψ(x, y, z) (x, y, z) ( x, y, z) ψ( x, y, z) = ψ(x, y, z) ψ( x, y, z) = ψ(x, y, z) 1

3. 4. 2017 11 23 2: ( 13) 2 13 ( 13) 3 [1] 3, 2

1. elastic scattering : (n, n) (a) (b) (c) 2. inelastic scattering : (n, n ) (n, nγ) (a) (b) (c) (d) kev (e) (f) n + 238 92 U 239 92 U 238 92 U +n 238 92 U 238 92 U + γ 238 92 U(n, γ) 239 92 U β 239 93 Np β 239 94 Pu ( 239 94 Pu) (3.1) 3. (absorption): capture reaction nuclear fission (a) (capture): n, γ i. 4 ii. 4 compound nucleus 3

iii. 1 1H(n, γ) 2 1H 59 27Co(n, γ) 60 27Co 113 48 Cd(n, γ) 114 48 Cd 113 48 Cd 115 49 In(n, γ) 116 49 In 151 63 Eu(n, γ) 152 63 Eu 197 79 Au(n, γ) 198 79 Au 198 80 Hg 238 92 U(n, γ) 239 92 U 239 90 Np 239 94 Pu 235 92 U(n, γ) 236 92 U (b) : (n, p), (n, α), (n, n) i. (n, α) 10 5 B(n, α) 7 3Li + 2.5MeV: 6 3Li(n, α) 3 1H(T) + 4.78MeV: ii. (n, p) 31 15P(n, p) 31 14Si 31 15 P (c) nuclear fission): (d) : 9 4Be(γ, n) 8 4Be 9 4Be(α, n) 12 6 C 9 4Be(n, 2n) 8 4Be 4 1. 2. c 2. K i 4

E ex,i, (i = a, b, A, B) (K a + M a c 2 ) + (K A + M A c 2 ) = (K b + E ex,b + M b c 2 ) + (K B + E ex,b + M B c 2 ) (4.1) (4.1) (K b + E ex,b ) + (K B + E ex,b ) (K a + K A ) = (m a + M A )c 2 (m b + M B )c 2 (4.2) (4.2) Q (4.3 (4.2) Q (m a + M A )c 2 (m b + M B )c 2. (4.3) (K b + E ex,b ) + (K B + E ex,b ) (K a + K A ) = Q (4.4) (4.4) Q (4.3) Q E B (i) [Z i m p + N i m n M i ] c 2, (i = A, a, b, B) Q = [M A + m a M B m b ] c 2 (4.5) = E B (b) + E B (B) E B (A) E B (a). (4.6) Q Q (4.4) E threshold ) E threshold = Q (1 + m a M A ). (4.7) 5

E threshold Q (a+a) Q = 0 3. a, A (4.4 K b + K B = Q (4.8) b, B v b, V B 0 = m b v b + M B V B V B = m b M B v b (4.9) K b = m b vb 2 /2, K B = M b Vb 2 /2 (4.8) (4.9) ( Q = 1 + m ) ( b K b = 1 + M ) b K B (4.10) M B m B (4.10) K b = K B = ( ) M B Q, (4.11) M B + m ( b ) m B Q (4.12) M B + m b (4.11) (4.12) Q 5 1. (a) (intensity, current I [I] = 1/(cm 2 s) N [N] = 1/cm 3 ), S, d reaction rate R total R total [R total ] = 1/s 6

(b) R R [R] = 1/(cm 3 s). 5 2. (a) R total I N S d σ 1 R total = σinsd (5.1) σ = R 1 total INSd, [σ] = s 1 [ cm 2 s ][ 1 ][cm cm 2 ][cm] = [cm2 ]. (5.2) 3 σ σ 3: microscopic 5 [4] p.48 (,reaction rate) [5] p.62 (reaction rate) [7] p.22 p.37 R( r, t) R( r, t)dv R( r, t) [8] pp.57-58 cm 3 /sec F (collision density) cm 3 /sec cm 3 sec [8] p.62 7

cross section 10 12 cm σ 1 barn(b ) 10 24 cm 2, 1 mb( ) 10 3 b. (5.3) (b) R : ( )R R R total Sd = σin. (5.4) 3. () 1 Σ Nσ, [Σ] = [ cm 3 ][cm2 ] = [cm 1 ] (5.5) Σ macroscopic cross section 2 U 235 0.7%, 4% ρ m A ( 1 ρ/m A N a, N Σ = ρn a m A σ (5.6) Σ Σ = N 1 σ 1 + N 2 σ 2 + + N i σ i + (5.7) 8

N i i σ i i 1 M Σ Σ = ρn a M (ν 1σ 1 + ν 2 σ 2 + + ν j σ j + ). (5.8) ν j j 1 σ j H 2 O ν H = 2, ν O = 1 4. I 0 x I(x) dx I I + di di di = σindx I(x) = I 0 e Nσx = I 0 e Σx. (5.9) I(x)/I 0 = e Σx x dx Σ dx dx Ndx 1 σ mean free path l x dx e Σx Σdx l 0 x e Σx Σdx = 1 Σ. (5.10),, 9

6 6.1 (scattering) (absorption) a s σ s σ a σ σ = σ s + σ a (6.1) (elastic scattering) (inelastic scattering) (capture) (nuclear fission) σ el σ in σ s = σ el + σ in (6.2) σ c σ f σ a = σ c + σ f (6.3), l t Σ t = Σ a + Σ s, l t = 1 Σ t, l a = 1 Σ a, l s = 1 Σ s (6.4) 1 l t = 1 l a + 1 l s. (6.5) l c, l f Σ a = Σ c + Σ f, l a = 1 Σ a, l c = 1 Σ c, l f = 1 Σ f, (6.6) 1 l a = 1 l c + 1 l f. (6.7) 6.2 * 7 ( 10

4: E n = (1/2)mv 2 ln E n σ f ln σ f [11] ( 3 3 1/v ln σ f ln v, σ f (πr 2 3 10 24 cm 2 = 3 barn) [1] 2017 11 23 https://www.jiji.com/jc/article?k=2017112300128&g= soc, http://www.kyoto-u.ac.jp/ja/research/research results/2017/ 171123 1.html [2] 1974 [3] 1971 11

[4] D. Jakeman( ) 1975 [5] ( 2 )1985 [6] - 1998. [7], 2003 [8] J. R., A. J. ( ) (,2003 [9] J. R., A. J. ( ) (,2003. [10] 2012 [11] Cross-Section Graphs of JENDL-4.0 http : //wwwndc.jaea.go.jp/j40fig/findex.html 12