1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

Similar documents
1 I p2/30

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

III Kepler ( )

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

Chap10.dvi

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

Chap9.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P


第90回日本感染症学会学術講演会抄録(I)

Ł\”ƒ-2005

Z: Q: R: C: sin 6 5 ζ a, b

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

III Kepler ( )

2

Note.tex 2008/09/19( )

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

( ) ( )

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

A

Untitled

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

TOP URL 1

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

genron-3

webkaitou.dvi

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

i

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

.. p.2/5

tnbp59-21_Web:P2/ky132379509610002944

08-Note2-web

December 28, 2018

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

パーキンソン病治療ガイドライン2002

研修コーナー

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si


Part () () Γ Part ,

日本内科学会雑誌第97巻第7号

日本内科学会雑誌第98巻第4号

抄録/抄録1    (1)V

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

( )

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

i 18 2H 2 + O 2 2H 2 + ( ) 3K

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

IA

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

chap1.dvi

高等学校学習指導要領

高等学校学習指導要領

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

K E N Z OU

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

Z: Q: R: C: 3. Green Cauchy

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

構造と連続体の力学基礎

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y



TOP URL 1

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

本文/目次(裏白)

meiji_resume_1.PDF

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)


DE-resume


1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

Transcription:

1 1 y = y() y, y,..., y (n) : n y F (, y, y,..., y (n) ) = 0 n F (, y, y ) = 0 1 y() 1.1 1 y y = G(, y) 1.1.1 1 y, y y + p()y = q() 1 p() q() (q() = 0) y + p()y = 0 y y + py = 0 y y = p (log y) = p log y = p( )d = P () + C y = C e p( )d p() P () p() C(= e C) C y(0) = y 0 p( )d

y 2y = 0 (log y) = 2 log y = 2 d = 2 + C y = Ce 2 y(0) = y 0 C = y 0 t N(t) dn dt = λn λ > 0 N(0) = N 0 N(t) = N 0 e λt N(t 0 ) = N 0 /2 t 0 N 0 2 = N 0e λt0 e λt0 = 1 2 1.1 137 Cs 131 I 30 [year] 8.04 [day] (log 2 0.6931 2011 3 137 Cs ep( t) 1.00 0.98 0.96 0.94 0.92 0.00 0.02 0.04 0.06 0.08 0.10

y + py = q (log y) = p d ( ) = d y + py = ( ) µ() µp = µ µ y + µp y = µ q ( ) = µy + µ y = (µy), (µy) = µq µ() µ = pµ µ() µy = µqd + C y = 1 ( µqd + C) µ µ = ep p( )d ( = e ) p( )d e p( )d q( )d + C } {{ } =C() y = C()e p( )d C C() y = C()e p( )d C() y = C e p( )d py y + py = C e p( )d = q C = e p( )d q C() = e p( )d q( )d + C y + y = 1 y + y = 0 y = Ce C C() y = y + C e, C e = 1 C = e C() = e + C y = (e + C) e = 1 + Ce 1.2 (1) dy d + y cos = 0 (2) dy d + y = e (3) dy d + (4) dy d + 2 y = 1 2 1 + 2 y = 1 1 + 2

2 1.1.2 1 y = F (, y) F (, y) y = f(y) dy f(y) = F (, y) y f(y) g() y = f(y)g() dy f(y) = d g()d y = 2y 2 dy y 2 = 2 d 1 y = 2 + C y = 1 2 + C p(t) dp dt (1) dp dt = ap, a ( () a > 0 p (2) dp dt p2 logistic dp dt = ap bp2 a, b 2.1 (1) dy d = 32 y (2) (1 + 2 ) dy d = 1 + tan α + tan β y2, ( tan(α + β) = 1 tan α tan β 2.2 p(t) dp dt = ap bp2 a, b (t = 0) p 0 a = 0.029, b = 2.695 10 12

1.1.3 1 y = f ( y ) v := y/ v = y y 2 y = 2 v + y = v + v v + v = f(v) v = f(v) v v dv d f(v) v = y = + 2y 2 + y 1 + 2v = 2 + v v = 1 + v2 2 + v v + 2 1 + v 2 dv = log + C 2 tan 1 v + 1 2 log(1 + v2 ) = log + C ( 4 tan 1 y ) + log( 2 + y 2 ) = C y y 1 1.1.4 Bernoulli 1 y + p()y = q()y n Bernoulli n = 0 n = 1 n 0, 1 n Bernoulli y n y y n + p 1 y n 1 = q u = 1/yn 1 u = (1 n) y y n y y n + p 1 u = q yn 1 1 n + pu = q u + (1 n)pu = (1 n)q u 2y + y = 2 2 ( + 1)y 3 y + 1 y = ( + 1)y3 2 n = 3 Bernoulli u = 1/y 2 u 1 u = 2( + 1) p() = 1/ q = 2( + 1) u() = C()e pd pd = d C() = = log e pd = e log = 1 ( 2) ( + 1)d = 2 ( + 1)d = 2 2 u() = ( 2 2 + C) = 3 2 2 + C 1 u = y2 = 1 3 + 2 2 C 2.3 (1) dy d = 2 + y 2 2y (2) 3 dy d y y2 = 0

3 1.1.5 1 y P (, y)d + Q(, y)dy = 0 ( P (, y) + Q(, y)y = 0) ϕ(, y) dϕ(, y) = ϕ ϕ d + y dy = 0 ϕ(, y) = C C ϕ y() d dy t ((t), y(t)) dϕ dϕ = ( ) ϕ ϕ d + y dy = ( ϕ d dt + ϕ ) dy dt y dt }{{} =0 y dϕ = 0 0 ϕ = C 2d + 2ydy = 0 + yy = 0 yy = 2d + 2ydy = 2 + y 2 = C 2 ϕ(, y) = 2 + y 2 y = C cos t, y = C sin t P d + Qdy = 0 2 ϕ(, y) P (, y) = ϕ ϕ (, y), Q(, y) = (, y) y P y = 2 ϕ y = 2 ϕ y = Q P y = Q P =, Q = y P y = Q = 0 a > 0 P = 3 2 3ay, Q = 3y 2 3a (3 2 3ay)d + (3y 2 3a)dy = 0, (, y) = (0, 0) P y = 3a, Q = 3a

P = ϕ ϕ = (3 2 3ay)d = 3 3ay + φ(y) ϕ y = 3a + φ (y) = 3y 2 3a φ(y) = y 3 ϕ(, y) = 3 3ay + y 3 = C C = 0 P d + Qdy = 0 µ(, y) µ(p d + Qdy) = 0 µ y (µp ) = ( P (µq) µ y Q ) = µ Q µ y P µ(p d + Qdy) = 0 µ µ Q(, y) = 1 P y µ = dµ d µ µ = P y P y P (, y) P = p()y + q() y (p()y + q())d + dy = 0 dy = (py + q) d 1 1 1 3.1 y(e) = 1 ( 1 1 ) d + 1 y y 2 dy = 0 3.2 1.2 (1) dy d + y cos = 0 (2) dy d + y = e (3) dy d + (4) dy d + 2 y = 1 2 1 + 2 y = 1 1 + 2 1.2 2 2 F (, y, y, y ) = 0 y (F (, y, y ) = 0) y = p p (F (y, y, y ) = 0) y = p y = p = p dy y d = p y p F ( y, p, p ) y p = 0 y p(y)

1.2.1 2 y = G(, y, y ) y + p()y + q()y = r() r() = 0 y + p()y + q()y = 0 p() q() y( 0 ) = y 0, y ( 0 ) = y 0 y 1 y 2 y 1 y 2 y 1y 2 0 C 1 C 2 y = C 1 y 1 + C 2 y 2 = 0 y( 0 ) = y 0 = C 1 y 1 ( 0 ) + C 2 y 2 ( 0 ) y ( 0 ) = y 0 = C 1 y 1( 0 ) + C 2 y 2( 0 ) 2 ( ) ( ) y1 ( 0 ) y 2 ( 0 ) C1 y 1( 0 ) y 2( = 0 ) C 2 y 1 y 2 y 1y 2 0 2 2 ( C1 C 2 ) = 1 y 1 ( 0 )y 2 ( 0) y 1 ( 0)y 2 ( 0 ) ( y0 y 0 ) ( y 2 ( 0 ) y 2 ( 0 ) y 1( 0 ) y 1 ( 0 ) ) ( ) y0 C 1, C 2 y 1 y 2 y 1y 2 0 2 y 0, y 0 2 C 1, C 2 y 0 y = C 1 y 1 + C 2 y 2 2

4 W [y 1, y 2 ] := y 1 y 2 y 1 y 2 = y 1y 2 y 1y 2 0 W [y 1, y 2 ] Wronskian y 2 y 1 Wronskian 0 Wronskian 0 y 1 y 2 Wronskian 1 W [y 1, y 2 ] = (y 1 y 2 y 1y 2 ) = y 1 y 2 y 1 y 2 = y 1 ( py 2 qy 2 ) ( py 1 qy 1 )y 2 = p()(y 1 y 2 y 1y 2 ) = p()w [y 1, y 2 ] y 1, y 2 1 W [y 1, y 2 ] = Ce p( )d C = 0 0 y + y = 0 2 y 1 = sin y 2 = cos W [sin, cos ] = y 1 y 2 y 1 y 2 = sin cos cos sin = 1 0 y 1 y 2 y + y = 0 y = C 1 sin + C 2 cos 4.1 2 2 y + 3y y = 0 (1) y 1 = y 2 = 1/ > 0 (2) y 1 y 2 (3) y(1) = 2, y (1) = 1 4.2 y 1, y 2 αy 1 + βy 2 γy 1 + δy 2 α,..., δ y + p()y + q()y = 0 y 1 y 1 y 2 = y 1 v v() y 2 + py 2 + qy 2 = (y 1 v + 2y 1v + y 1 v ) + p(y 1v + y 1 v ) + q(y 1 v) = (2y 1 + y 1 p)v + y 1 v = 0 u := v 1 y 1 u + (2y 1 + y 1 p)u = 0 y 1 ( ) 2y u = 1 + p u log u = 2 log y 1 pd + C y 1 u = C y1 2 e pd v = ud v y 2 = y 1 ud Wronskian W [y 1, y 2 ] = y 1 y 2 y 1y 2 = e pd Wronskian 0 y 1 y 2

2 y 6y = 0 y 1 = 3 y 2 = 2 y 1 y 2 p() = 0 u = C/y 2 1 u = 6 y 2 = y 1 d = 2 6 4.3 2 y (3 + 1)y + (2 + 1)y = 0 (1) y = e (2) (y = ( 1)e 2 ) y + py + qy = r 1 y + py + qy = 0 y 1, y 2 C 1, C 2 y() = C 1 y 1 () + C 2 y 2 () y y = C 1 y 1 + 2C 1y 1 + C 1 y 1 + C 2 y 2 + 2C 2y 2 + C 2 y 2 py = p(c 1 y 1 + C 1y 1 ) + p(c 2 y 2 + C 2y 2 ) qy = q C 1 y 1 + q C 2 y 2 y 1, y 2 2C 1y 1 + C 1 y 1 + 2C 2y 2 + C 2 y 2 + p(c 1y 1 + C 2y 2 ) = r C 1, C 2 C 1y 1 + C 2y 2 = 0 C 1 y 1 + C 2 y 2 + C 1y 1 + C 2y 2 = 0 y { C 1 y 1 + C 2y 2 = 0 C 1y 1 + C 2y 2 = r C 1y 1 + C 2y 2 = r ( ) ( ) y1 y 2 C 1 y 1 y 2 C 2 = C 1, C 2 2 2 y 1 y 2 Wronskian W [y 1, y 2 ] ( ) 0 r Cramer C 1 1 = W [y 1, y 2 ] 0 y 2 r y 2 = ry 2 W [y 1, y 2 ], 1 C 2 = W [y 1, y 2 ] y 1 0 y 1 r = ry 1 W [y 1, y 2 ] C 1 () = ry 2 ry 1 W [y 1, y 2 ] d, C 2 () = = W [y 1, y 2 ] d y + y = cos C 1 sin + C 2 cos W [sin, cos ] = 1 C 1 = cos2 C 1 = 1 1 2 C 2 cos sin = 1 C 2 = ( + 12 sin 2 ) + C 1 (1 + cos 2 )d = 1 2 cos sin d = 1 2 cos2 + C 2 C 1, C 2 2 C 1, C 2 y() = C 1 sin + C 2 cos + 1 ( + 12 ) 2 sin 2 sin + 1 2 cos3 = C 1 sin + C 2 cos + 1 2 sin

5 C 1, C 2 r() y + y + y = 2 y = a 0 + a 1 + a 2 2 2a 2 + (a 1 + 2a 2 ) + (a 0 + a 1 + a 2 2 ) = 2 (2a 2 + a 1 + a 0 ) + (2a 2 + a 1 ) + (a 2 1) 2 = 0 0 a 2 = 1, a 1 = 2, a 0 = 0 y = 2 + 2 y 2y + 4y = e 2 y = ae 2 (4a 4a + 4a)e 2 = e 2 4a = 1 a = 1 4 y = e 2 /4 y + 4y = sin 3 y = a sin 3 ( 9a + 4a) sin 3 = sin 3 a = 1 5 y = 1 5 sin 3 y + y = cos 1.2.2 2 y 2 y + 2ay + by = r a, b r y + 2ay + by = 0 y = m 3 y, y, y y y = e λ y = λe λ, y = λ 2 e λ y + 2ay + by = (λ 2 + 2aλ + b)e λ = 0 0 λ λ 2 + 2aλ + b = 0 y = e λ λ 2 λ ± := a ± a 2 b 2 a 2 b 0 y 1 = e λ +, y 2 = e λ Wronskian λ + λ W [e λ +, e λ ] = (λ λ + )e (λ ++λ ) 0 y 1, y 2 y() = C 1 e λ + + C 2 e λ

y y 6y = 0 λ 2 λ 6 = 0 (λ + 2)(λ 3) = 0 λ = 3, 2 y = C 1 e 3 + C 2 e 2 y + 2y + 4y = 0 λ 2 + 2λ + 4 = 0 λ ± = 2 ± 3i y 1 = e ( 2+ 3i) = e 2 (cos 3 + i sin 3) y 1 = e ( 2 3i) = e 2 (cos 3 i sin 3) C 1, C 2 y = (C 1 cos 3 + C 2 sin 3)e 2 a 2 b = 0 y + 2ay + a 2 y = 0 λ 2 + 2aλ + a 2 = 0 (λ + a) 2 = 0 λ = a y 1 = e a y 2 = y 1 v u = v u ( ) 2y u = 1 + p u y 1 p() = 2a 2y 1/y 1 = 2a 0 u = 0 v = 0 v 1 v = C v y 2 = y 1 = e a y = C 1 e a + C 2 e a 5.1 (1) 6y 7y + y = 0 (2) y 3y + y = 0 (3) y + y + y = 0 (4) y 6y + 9y = 0 5.2 (1) y + 3y = 3 1 (2) y + 2y 15y = cos 3 (3) y 2y 3y = e 3 (y = C 1 e + C 2 e 3 + e 3 /4)

6 Euler y + py + qy = 0 p() 1/ q() 1/ 2 2 y + α y + β 2 y = 0 2 y + αy + βy = 0 Euler Euler = e t t t = e t t = log dt d = 1 d d = dt d d dt = 1 d dt d 2 d 2 = d ( ) 1 d = 1 d d dt 2 dt + 1 1 d 2 dt 2 = 1 ( d 2 2 dt 2 d ) dt 2 y + αy + βy = 0 d2 y + (α 1)dy dt2 dt + βy = 0 (α 1) 2 4β 0 λ 2 + (α 1)λ + β = 0 λ ± t y(t) = C 1 e λ +t + C 2 e λ t 2 y + αy + βy = 0 y() = C 1 λ + + C 2 λ (α 1) 2 4β = 0 λ = α + 1 y(t) = C 1 e λt + C 2 te λt y() = C 1 λ + C 2 λ log Euler 2 y + αy + βy = 0 1.2.3 2 Euler p() = α/ q() = β/ 2 2 0 p() = p 1 q 2 + p 0 + p 1 ( 0 ) +, q() = 0 ( 0 ) 2 + q 1 + q 0 + q 1 ( 0 ) + 0 ( 0 )p() ( 0 ) 2 q() = 0 Taylor = 0 p() q() = 0 Taylor = 0

y + 2y + 2y = 0 = 0 p() = 2, q() = 2 = 0 y = a 0 + a 1 + a 2 2 + = n=1 a n n y = a 1 + 2a 2 + 3a 3 2 + = na n n 1, y = 2a 2 + 6a 3 + = n(n 1)a n n 2 y + 2y + 2y = 2a 2 + 2a 0 + n=0 n=2 (2a n + 2na n + (n + 2)(n + 1)a n+2 ) n n=1 0 n 0 a 2 + a 0 = 0, (2n + 2)a n + (n + 2)(n + 1)a n+2 = 0 a 2 = a 0, a n+2 = 2 n + 2 a n 2 n n = 2k a 2 = a 0, a 2k+2 = 1 k + 1 a 2k a 2k = ( 1)k a 0 a 0 = 1 y 0 k! y 0 = ( 1) k 2k = e 2 k! k=0 n = 2k + 1 a 2k+1 = ( 1)k 2 k a 2k+3 = 2 2k + 3 a 2k+1 (2k + 1)!! a 0 a 1 = 1 y 1 y 1 = k=0 ( 1) k 2 k (2k + 1)!! 2k+1 y 1 C 0, C 1 y = C 0 y 0 + C 1 y 1 y 0, y 1 Bessel 2 y + y + ( 2 ν 2 )y = 0 Bessel 2 p() = 1/ q() = 1 (ν/) 2 = 0 ν = 1/2 Taylor y = λ n=0 a n n λ y = λ λ 1 n=0 y = λ(λ 1) λ 2 a n n + λ n=0 n=1 na n n 1, a n n + 2λ λ 1 n=1 na n n 1 + λ n=2 n(n 1)a n n 2

2 y = λ(λ 1) λ y = λ λ ( 2 1 ) y = λ 4 n=0 n=2 n=0 a n n + λ a n n + 2λ λ a n 2 n 1 4 λ n=1 na n n, n=0 n=1 a n n na n n + λ n=2 n(n 1)a n n, 2 y + y + ( 2 1 4 )y = 0 n 0 ( λ 2 1 ) a 0 = 0, 4 ( λ 2 + 2λ + 3 ) a 1 = 0 4 { a n 2 + (λ + n) 2 1 } a n = 0 (n 2) 4 a 0 λ λ λ = ±1/2 6.1 ( 2 y + y + ( 2 1 4 )y = 0 (1) λ = 1/2 a 0 = 1 a 2n+1 = 0, a 2n = ( 1)n (2n + 1)! y 1 = 1 sin (2) λ = 1/2 a 0 = 1 a 1 = 0 y 2 = 1 cos 6.2 (1 2 )y 2y + α(α + 1)y = 0 Legendre I 7.4 (1) = ±1 (2) α = n Legendre n (3) α = n P n (1) = 1 Legendre P 0 (), P 1 (), P 2 (), P 3 ()