0201

Similar documents
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

Maxwell

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

untitled

I ( ) 2019

現代物理化学 1-1(4)16.ppt

30

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

抄録/抄録1    (1)V

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

2 p T, Q

研修コーナー

パーキンソン病治療ガイドライン2002

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

untitled

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

Maxwell

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

陦ィ邏・2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

日本内科学会雑誌第102巻第4号

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

2011de.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

I

Microsoft Word - ●ipho-text3目次

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

第86回日本感染症学会総会学術集会後抄録(I)

untitled

LLG-R8.Nisus.pdf

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)


プログラム

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c


数学の基礎訓練I

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

(1) (2) (3) (4) 1

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

IA

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

gr09.dvi

Note.tex 2008/09/19( )

基礎数学I

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

プログラム

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

数学概論I

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

構造と連続体の力学基礎

高知工科大学電子 光システム工学科

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

成長機構

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

−g”U›ß™ö‡Æ…X…y…N…g…‰

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de


(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

QMI_10.dvi

Z: Q: R: C: 3. Green Cauchy

/02/18

本文/目次(裏白)

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

現代物理化学 2-1(9)16.ppt

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2


6.1 (P (P (P (P (P (P (, P (, P.

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

master.dvi


ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

Transcription:

2018 10 17 2019 9 19 SI J cal 1mL 1ºC 1999 cal nutrition facts label calories cal kcal 1 cal = 4.184 J heat capacity 1 K 1 J K 1 mol molar heat capacity J K mol (specific heat specific heat capacity) 1 kg mass heat capacity J K kg (volumetric heat capacity volume-specific heat capacity) J K m 1 1 1 1 1 3 C P C P = C V + R (3.2.1) R ayer s relation C V 1 / 12

1 γ γ = C P C V = C V + R C V = 1 + R C V (3.2.2) 1 V m N ideal gas free particle r v p x, y, z ( x, y, z, v x, v y, v z ) 6 topological space μ N 6N Γ Γ representative point Γ E i v i = ( v ix, v iy, v iz ) E i E 2 E i = m v m i ( vix 2 + v2 iy + v2 iz) = 2 2 N E = E i i=1 (3.3.1) (3.3.2) Γ 6N ergodic hypothesis ergodic theorem 3.3.A (3.3.2) 2 / 12

μ v C cell j = 1,, N μ j 1 1 Γ N N N μ j 0 1 1 N 1 1 n 1 N n p(n 1,, n ) = 3.3.B N! n 1! n 2! n! ( N ) N N N N (3.3.3) principle of maximum entropy p(n 1,, n ) +( N ) ln ( N ) + N ln N ln N (3.3.4) p(n 1,, n ) ln p (n 1,, n ) (n 1,, n ) n! n Stirling 3.3.C ln n! n ln n n n Stirling n n 0 1 3.3.D ln p (n 1,, n ) = ln N! ln n j! Γ gamma function Γ (x) digamma function ψ(x) Γ (x) t x 1 e t dt 0 (3.3.5) 3 / 12

0.8 0.6 ln (x + e -γ ) 0.4 y 0.2 0.0 ψ(x + 1) -0.2-0.4 0.0 0.5 1.0 x 1.5 2.0 ln(x + e γ ) ψ(x) d (3.3.6) dx ln Γ (x) Γ n! = Γ (n + 1) (3.3.4) ln p (n 1,, n ) = ln N! ln Γ ( n j + 1 ) +( N ) ln ( N ) + N ln N ln N n j (j = 1,, ) (3.3.7) ln p (n 1,, n ) n j (3.3.8) ψ(x) = d dn j ln Γ ( n j + 1 ) = ψ ( n j + 1 ) (j = 1,, ) ψ(x + 1) = γ + ( 1) k ζ(k)x k 1 k=2 (3.3.9) 4 / 12

γ Euler's constant γ = 0.57721 ζ(k) Riemann zeta function ζ(k) n=1 1 n k (3.3.10) x ψ(x + 1) ln(x + e γ ) (3.3.11) x (3.3.8), (3.3.11) ln p (n 1,, n ) n j ln ( n j + e γ ) (j = 1,, ) (3.3.12) 3.3.1 ψ(x + 1) lnx ln(x + e γ ) (3.3.7) ln p (n 1,, n ) {n j } {n j } N E n j = N E j n j = E (3.3.13) (3.3.14) method of Lagrange multiplier 3.3.E α β L (n 1,, n, α, β) ln p (n 1,, n ) α n j N β E j n j E (3.3.15) L (n 1,, n, α, β) (n 1,, n, α, β) (3.3.12) (3.3.13), (3.3.14) L (n 1,, n, α, β) n j ln ( n j + e γ ) α βe j = 0 (j = 1,, ) (3.3.16) L (n 1,, n, α, β) α = n j N = 0 (3.3.17) 5 / 12

L (n 1,, n, α, β) β = E j n j E = 0 (3.3.18) + 2 (3.3.16) ln ( n j + e γ ) +α + βe j = 0 n j e α exp ( βe j ) e γ (3.3.19) (3.3.19) (3.3.13) e α exp ( βe j ) e γ N e α N + e γ exp ( βe j) (3.3.20) (3.3.19) n j N + e γ exp ( βe j) exp ( βe j ) e γ (3.3.21) β > 0 E j n j E j β (3.3.21) (3.3.14) n j E j E j n j N + e γ exp ( βe j) E j exp ( βe j ) e γ E (3.3.22) β T β = 1 k B T k B Boltzman k B = 1.380 649 10 23 J K 1 m 2 kg s 2 K 1 (3.3.23) (3.3.21) (3.3.22) μ μ x, y, z ( x, y, z, v x, v y, v z ) 6 6 / 12

(x, y, z) 3.3.F μ x, y, z ( v x, v y, v z ) 3 j v jx v x < v jx + dv x v jy v y < v jy + dv y v jz v z < v jz + dv z i v i = ( v ix, v iy, v iz ) (3.3.1), (3.3.21), (3.3.23) p (v i) = p ( v ix, v iy, v iz ) exp ( E i k B T ) = exp m ( v2 ix + v2 iy + v2 iz) 2k B T (3.3.24) Gauss i p (v) = p ( v x, v y, v z ) exp ( E k B T ) = exp m ( v2 x + v 2 y + v 2 z ) 2k B T (3.3.25) axwell (3.3.26) axwell-boltzman Boltzman p (E ) exp ( E k B T ) 7 / 12

x, y, z L N +x 2mv x x v x 2L /v x +x F = Nm v2 x L P P = F L 2 = Nm v2 x L 3 V = L 3 (3.3.1.2) (3.3.1.1) (3.3.1.2) PV = Nm vx 2 (3.3.1.3) T x vx 2 (3.3.24) v 2 x = v 2 x exp exp m ( vx 2 + vy 2 + vz 2 ) 2k B T m ( vx 2 + vy 2 + vz 2 ) 2k B T dv x dv y dv z dv x dv y dv z = v 2 x exp ( mv2 x 2k B T ) dv x (3.3.1.3) (3.3.1.4) exp ( mv2 x 2k B T ) dv x = k B T m (3.3.1.4) PV = Nk B T (3.3.1.5) N A k B R R = N A k B n N = N A n PV = n RT (3.3.1.6) 8 / 12

ideal gas law (3.3.1.4) (3.3.1.7) vx 2 = v2 y = v2 z v2 = vx 2 + v2 y + v2 z v 2 1 2 m v2 x = 1 2 k B T 1 2 m v2 = 3 2 k B T (3.3.1.8) equipartition theorem U U = N i=1 1 2 m v2 i = 3 2 Nk B T (3.3.2.1) V du dt = 3 2 Nk B C V = N A N C V du dt = 3 2 N Ak B = 3 2 R (3.3.2.2) (3.3.2.3) T T + dt PV = Nk B T V dv = Nk B dt P (3.3.2.4) PdV = Nk B dt d (U + PV ) dt = 3 2 Nk B + Nk B = 5 2 Nk B (3.3.2.5) 9 / 12

(3.3.2.6) ayer C P = C V + R ayer C P = N A N C P d (U + PV ) dt = 5 2 N Ak B = 5 2 R 3.3.A ergodic ergodicity ergodic ergodicity έργον (ergon) όδος (hodos) 3.3.B (3.5) 3 1 5 5 3 1 1 2 1 3 1 3 1 1 2 2 1 3 5 3 5 5 3 = 2 5 3 3 5 3 3 3C 1 2 C 1 5 5 ( 5 ) ( 5 ) = 3! 5 3 3 1!1!1! 5 3 3 ( 5 ) ( 5 ) 0 1, 2, 3 0 0 C 0 = 0! 1, 2, 3 0! 0! = 1 3 4, 5 2 3! N 1! 1! 1! 0! 0! 22 3 3 n 1,, n N! n 1! n! (N )N N N N! n 1! n! ( N ) N N N 1 N = N! n 1! n! ( N ) N N N N 3.3.C Stirling Stirling n ln n! n ln n n ln 10! = 15.1044 10 ln 10 10 = 13.0259 ln 100! = 363.739 100 ln 100 100 = 360.517 ln 1000! = 5912.13 1000 ln 1000 1000 = 5907.76 10 / 12

n Stirling ψ(x + 1) lnx ψ(1) = 0.577216 ψ(2) = 0.422784 ψ(11) = 2.35175 ψ(101) = 4.61016 ψ(1001) = 6.90826 ln 0 = ln 1 = 0 ln 10 = 2.30259 ln 100 = 4.60517 ln 1000 = 6.90776 ln(0 + e γ ) = 0.577216 ln(1 + e γ ) = 0.445621 ln(10 + e γ ) = 2.35721 ln(100 + e γ ) = 4.61077 ln(1000 + e γ ) = 6.90832 ψ(10001) = 9.21039 ln 10000 = 9.21034 ln(10000 + e γ ) = 9.2104 x ψ(x + 1) ln(x + e γ ) x ψ(x + 1) lnx 3.3.D axwell μ n 0 1 Stirling ln n! n ln n n 1 3 (1966) 29 (1980) 3.3.E Lagrange g (x, y) = 0 f (x, y) (x, y) = (a, b) λ L (x, y, λ) = f (x, y) λg (x, y) x L (x, y, λ) = x f (x, y) λ x g (x, y) = 0 y L (x, y, λ) = y f (x, y) λ y g (x, y) = 0 λ L (x, y, λ) = g (x, y) = 0 (x, y, λ) = (a, b, μ) (x, y) = (a, b) Lagrange 3.3.F N Lagrange 11 / 12

N (n 1,, n ) p (n 1,, n ) (3.5) (3.9) ln p (n 1,, n ) = ln N! ln Γ ( n j + 1 ) +( N ) ln ( N ) + N ln N ln N (3.F.1) N n j = N (3.F.2) Lagrange L (n 1,, n, α ) ln p (n 1,, n ) α n j N (3.F.3) L (n 1,, n, α ) n j ln ( n j + e γ ) α = 0 (j = 1,, ) (3.F.4) (3.F.4) L (n 1,, n, α ) α = n j N = 0 (3.F.5) n j e α e γ (j = 1,, ) (3.F.6) (3.F.5) ( e α e γ ) N 0 e α N + e γ (3.F.7) (3.F.6) n j N (3.F.8) 12 / 12