A 99% MS-Free Presentation

Similar documents
4 19

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


Gmech08.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Contents 1 Jeans (

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin


c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l


2011de.dvi

Note.tex 2008/09/19( )

all.dvi


all.dvi

I 1

TOP URL 1

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

sec13.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

all.dvi

( ) ,

pdf

総研大恒星進化概要.dvi

gr09.dvi

Gmech08.dvi

Untitled

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R



( )

Gmech08.dvi

TOP URL 1

Part () () Γ Part ,

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

C:/KENAR/0p1.dvi

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

meiji_resume_1.PDF

keisoku01.dvi

I ( ) 2019

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

TOP URL 1




1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

量子力学 問題

A

dynamics-solution2.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

³ÎΨÏÀ

A

B ver B

K E N Z OU


I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

i

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

重力方向に基づくコントローラの向き決定方法


Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

08-Note2-web

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

IA

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

all.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Microsoft Word - 章末問題

2000年度『数学展望 I』講義録


untitled

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

QMII_10.dvi

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

Transcription:

A 99% MS-Free Presentation

2

Galactic Dynamics (Binney & Tremaine 1987, 2008) Dynamics of Galaxies (Bertin 2000) Dynamical Evolution of Globular Clusters (Spitzer 1987) The Gravitational Million-Body Problem (Heggie & Hut 2003) II ( 2008) 1 1.1-1.2 N ( )

( )

φ e r/λ r λ : λ fm λ fm λ = λ eff / λ =

d2 x N i dt 2 = x j x i d 2 x Gm j x j x i 3 dt 2 j=1,j i = Gm x x 3 + f p

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

d 2 x i dt 2 = N j=1,j i Gm j x j x i x j x i 3 3N 2 O(N 2 )

f(x, v, t) f f + v f Φ t v = 0 2 Φ = 4πGρ ρ = m fdv ( )

1 f(x, v, t) w = (x, v) ẇ = (ẋ, v) = (v, Φ) ( ) f t + 6 i=1 (fẇ i ) w i = 0 (f ) df dt = f f + v f Φ t v = 0

N (m 0) f = δ(r r(t), v v(t))

2 f(x, v, t) = c S ( 1 ) n n = ( f x, f v, f t ) C = n C = 0 ( v, dφ ) dx, 1 (S ) S (dx, dv, dt) C dx v = dv dφ/dx = dt 1 dx dt = v, dv dt = dφ dx

f f t = 0 f Φ f 0 ( )

Φ x v I E 3 J ( ) d I I(x, v) = v I Φ dt v = 0

f f I k 0

ρ = m 1 r 2 d dr f(e, J) f f(e) ( r 2 dφ dr ( ) 1 2 v2 + Φ dv ) = 4πGρ 1. f v ρ(φ) 2. ρ Φ(r)

King f { f e E e E e E 0 if E < E 0 0 if E > E 0 Plummer E 0 : f ( E) 7/2

Plummer f ( E) 7/2, ρ (c 2 + r 2 ) 5/2 N = 1024

0 : ν t + (νv i) = 0 x i ν = fdv, v i = 1 fv i dv ν 1 : v j ν v j t + νv v j i = ν Φ (νσ2 ij ) x i x j x i σ 2 ij = (v i v i )(v j v j ) = v i v j v i v j (1 )

ρ t + (ρv i) = 0 x i ρ v j t + ρv v j i = ρ Φ p x i x j x i

d(νv 2 r ) dr + ν r ( )] [2vr 2 vθ 2 + v2 φ = ν dφ dr d(νv 2 r ) dr = ν dφ dr = ν GM(r) r 2 M(r) = rv2 r G ( dln ν dln r + dln v2 r dln r ) [(ν(r), v 2 r(r)] M(r)

1 : x k (ν ρ ) 1 2 T jk = 1 2 d 2 I jk dt 2 = 2T jk + Π jk + W jk I jk = ρx j x i dx ρ v j v k dx, Π jk = 1 2 ρσ 2 jkdx W jk = 1 2 G ρ(x)ρ(x ) (x j x j)(x k x k) x x 3 dx dx (1 )

K = 1 2 2K + W = 0 ρ(x)v 2 dx, W = 1 2 ρ(x)ρ(x 1 ) x x dxdx E = K + W = K = 1 2 W 1/2

: M v 2 M v 2 + W = 0 v 2 = W M = GM r g 0.4 GM r h : r g = GM 2 W : r h 0.4r g M v2 r h 0.4G ( v 2, r h ) M

f f + v f Φ t v = f t coll f t : 2 coll : : 2 2

2? ( ) N ( )

2 V b θ (m,v = 0,n) (m = 0,v) v = v sin θ = 2v 2 v 2 = bmax b min b/b 0 1 + (b/b 0 ) 2, b 0 = Gm v 2 v 2 2πnvbdb G2 nm 2 ln Λ v Λ = b max b min b max :, b min : 90

T relax v2 v 2 v 3 G 2 nm 2 ln Λ N ln N T cross T cross = R v ( v 2 GNm/R) N T cross [yr] T relax [yr] 10 11 10 8 10 18 10 5 10 5 10 9

(m f, v f, n f ) (m t, v t ) V = v f v t tan θ = 2b (b/b 0 ) 2 1, b 0 = G(m t + m f ) V 2 v = v = m f m t + m f V sin θ = 2V m f m t + m f V (1 cos θ) = 2V m f m t + m f b/b 0 1 + (b/b 0 ) 2 m f m t + m f 1 1 + (b/b 0 ) 2

v f = 0 ( ) v = 0 v = 4πG2 n f m f (m t + m f ) ln Λ V 2 v 2 = 8πG2 n f m 2 f ln Λ V v 2 = 4πG2 n f m 2 f V

1 ( ) v = 4πG2 n f m f (m t + m f ) ln Λ V 2 (n f m f )

2 v 2 = 8πG2 n f m 2 f ln Λ V v 2 = 4πG2 n f m 2 f V

2 2 T relax v 2 v 2 σ 3 = 0.34 G 2 ρm ln Λ ( 1.8 1010 σ = ln Λ 10kms 1 ) 3 ( ) 1 ( ) 1 ρ m 10 3 M pc 3 [yr] M T half relax = 0.14N ln(0.4n) r 3 h GM ( 6.5 108 M ln(0.4λ) 10 5 M ) 1/2 ( m M ) 1 ( ) 3/2 rh [yr] pc

T half relax > 2 ρ σ T relax 2 Λ (b min ) PM 2 Λ (b min ) 2!

1 8 23 32 1 11 52 64 = ( 1) (2 ) ( ) = log( ) 7 15

bit 0 1 ( ) 3 10 8 5 10 17

2 : 1.234567(7 ) 1.234566(7 ) = 1.0 10 6 (1 ) 2 : 1.234567 + 1.234567 10 6 = 1.234568

dx dt = f(x, t), x(t 0) = x 0 x x i+1 = x i + f(x i, t i ) t x i+1 x i t t i t i+1 t

m x(t i+1 ) x i+1 = O( t m+1 ) x(t i+1 ):, x i+1 : O( t m+1 ) t t = O( tm )

N dv i dt = N j=1,j i Gm j x j x i x j x i 3 dx i dt = v i O(N 2 )

v i+1/2 = v i + a i t 2 x i+1 = x i + v i+1/2 t v i+1 = v i+1/2 + a i+1 t 2 2

v i+1 = v i + a i t + 1 2ȧi t 2 x i+1 = x i + v i t + 1 2 a i t 2 ȧ i = a i+1 a i t 2

1. v 0 a 0 v 1/2 2. x 0 v 1/2 x 1 3. x 1 a 1 4. v 1/2 a 1 v 1 5. 1

: d 2 x dt 2 = x ( ) ( ) ( ) 2 ( )

4 a ȧ

x p = x 0 + v 0 t + a 0 2 t2 + ȧ0 6 t3 v p = v 0 + a 0 t + ȧ0 2 t2 x c = x p + a(2) 0 24 t4 + a(3) 0 120 t5 v c = v p + a(2) 0 6 t3 + a(3) 0 24 t4

3 a a t 0 t t 1 t (t 0, a 0, ȧ 0 ), (t 1, a 1, ȧ 1 ) a(t) = a 0 + ȧ 0 t + a(2) 0 2 t2 + a(3) 0 a (2) 0 = 6(a 0 a 1 ) t(4ȧ 0 + 2ȧ 1 ) t 2 a (3) 0 = 12(a 0 a 1 ) + 6 t(ȧ 0 + ȧ 1 ) t 3 6 t3

1. x 0 v 0 a 0 ȧ 0 x p v p 2. x p v p a 1 ȧ 1 3. a 0 ȧ 0 a 1 ȧ 1 a (2) 0 a(3) 0 4. x p v p a (2) 0 a(3) 0 x c v c 5. 1

1. t i + t i 2. 3. 4. 1

2 1 2 3 0 1!

PM(Particle-Mesh)(FFT) P 3 M(Particle-Particle Particle-Mesh)

O(N 2 ) O(N log N) 1. 2. 3. : l d < θ l: d: θ:

2

GRAPE GRAPE Host Computer Position etc. Force etc. GRAPE Orbital Integration etc. Data Transfer Force Calculation GRAPE x j x ij Σ( f ) j ij x y j x i y ij Σ( f ) j ij y y i z j z ij Σ( f ij ) z j z i m j.. ε i 2 2 x ij + 2 y ij 2 z ij ε 2 + + i r ij 2 r ij 2 r ij 3 m j /r 3 ij r ij 3

GRAPE LSI YEAR 2001 99 GRAPE-5 GRAPE-6 MDM (MDGRAPE-2 + WINE-2) PROGRAPE-1 Arbitrary Interaction GRAPE 94 GRAPE-4 HARP-2 MD-GRAPE SPH GRAPE-3 HARP-1 GRAPE-2A WINE-1 Ewald HARP-1 ȧ HARP-2 89 GRAPE-1A GRAPE-1 Limited Accuracy GRAPE-2 Full Accuracy Arbitrary Central Force

1 2