H

Similar documents
2014計算機実験1_1

x h = (b a)/n [x i, x i+1 ] = [a+i h, a+ (i + 1) h] A(x i ) A(x i ) = h 2 {f(x i) + f(x i+1 ) = h {f(a + i h) + f(a + (i + 1) h), (2) 2 a b n A(x i )


A

x ( ) x dx = ax

error_g1.eps

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

untitled

mugensho.dvi

x(t) + t f(t, x) = x(t) + x (t) t x t Tayler x(t + t) = x(t) + x (t) t + 1 2! x (t) t ! x (t) t 3 + (15) Eular x t Teyler 1 Eular 2 Runge-Kutta


d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

OK (S) vncviewer UNIX EDS vncviewer : VNC server: eds.efc.sec.eng.shizuoka.ac.jp:51 OK 2

6. Euler x

DVIOUT

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

p12.dvi

1

数値計算:常微分方程式

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

sim98-8.dvi

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)



,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

平成13年度

°ÌÁê¿ô³ØII

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

2011de.dvi

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n


9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

KENZOU

untitled

untitled

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

lecture

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.


f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

v er.1/ c /(21)

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

K E N Z OU


Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

II 2 II

Morse ( ) 2014

2 T ax 2 + 2bxy + cy 2 + dx + ey + f = 0 a + b + c > 0 a, b, c A xy ( ) ( ) ( ) ( ) u = u 0 + a cos θ, v = v 0 + b sin θ 0 θ 2π u = u 0 ± a

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

b3e2003.dvi

DE-resume

sim0004.dvi

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

Numerical Analysis II, Exam End Term Spring 2017

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin


1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

30 (11/04 )

meiji_resume_1.PDF

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)



n ( (

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

A

1. A0 A B A0 A : A1,...,A5 B : B1,...,B


2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

Microsoft Word - 触ってみよう、Maximaに2.doc

dynamics-solution2.dvi

平塚信用金庫の現況 2015

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

Transcription:

H25 1 2 1 seto@ics.nara-wu.ac.jp

Euler xi+1 x ( xi f(ti, xi) ) t ti ti+1 h

Euler Euler x xi+1 k 1 = hf (t i, x i ) xi+1 x i+1 = x i + hf t i + h 2, x i + k 1 2 xi f t i + t i+1 2, x i + x i+1 2 t ti ti + h/2 ti+1 h

x(t) t = ti x(t i+1 )=x(t i + h)=x(t i )+hx (t i )+ h2 2 x (t i)+ Taylor O(h 2 ) ( 2 )

Runge-Kutta ( ) Euler 4 k 1 = f (t i, x i ) k 2 = f (t i + h 2, x i + h 2 k 1) k 3 = f (t i + h 2, x i + h 2 k 2) k 4 = f (t i + h, x i + hk 3 ) Taylor O(h 4 ) ( 4 ) x i+1 = x i + h k 1 6 + k 2 3 + k 3 3 + k 4 6

Runge-Kutta ( ) 4 x k 1 = f (t i, x i ) 1 k 2 = f (t i + h 2, x i + h 2 k 1) 2 xi+1 4 k 3 = f (t i + h 2, x i + h 2 k 2) 3 3 k 4 = f (t i + h, x i + hk 3 ) 4 xi 1 2 x i+1 = x i + h k 1 6 + k 2 3 + k 3 3 + k 4 6 ti ti + h/2 ti+1 t h

Runge-Kutta ( ) 4 x k 1 = f (t i, x i ) 1 xi+1 k 2 = f (t i + h 2, x i + h 2 k 1) 2 k 3 = f (t i + h 2, x i + h 2 k 2) 3 k 4 = f (t i + h, x i + hk 3 ) 4 xi 1 2 x i+1 = x i + h k 1 6 + k 2 3 + k 3 3 + k 4 6 ti ti + h/2 ti+1 t h

Runge-Kutta ( ) 4 x k 1 = f (t i, x i ) 1 xi+1 k 2 = f (t i + h 2, x i + h 2 k 1) 2 k 3 = f (t i + h 2, x i + h 2 k 2) 3 3 k 4 = f (t i + h, x i + hk 3 ) 4 xi 1 2 x i+1 = x i + h k 1 6 + k 2 3 + k 3 3 + k 4 6 ti ti + h/2 ti+1 t h

Runge-Kutta ( ) 4 x k 1 = f (t i, x i ) 1 k 2 = f (t i + h 2, x i + h 2 k 1) 2 xi+1 4 k 3 = f (t i + h 2, x i + h 2 k 2) 3 3 k 4 = f (t i + h, x i + hk 3 ) 4 xi 1 2 x i+1 = x i + h k 1 6 + k 2 3 + k 3 3 + k 4 6 ti ti + h/2 ti+1 t h

(, 1 ) #define DT 0.01 /* */ #define STEP_MAX 1000 /* DT*STEP_MAX = 10.0 */ double fn(double, double); /* */ void runge_kutta(double, double, double*, double); /* */ main(){ long step; double t, x, x_next; dx dt = f (t,x) } x=0.1; /* */ for(i=0; i<step_max; i++){ t = i*dt; euler(t, x, &x_next, DT); x = x_next; } t = 0 t = DT*STEP_MAX void runge_kutta(double t, double x, double *x_out, double h){... } double fn(double t, double x){... }

(, 1 ) runge_kutta ti x(ti), h ti+1 = ti + h x(ti+1) ti x(ti) x(ti+1) void runge_kutta(double t, double x, double *x_out, double h){ h k 1 = f (t i, x i ) k 2 = f (t i + h 2, x i + h 2 k 1) k 3 = f (t i + h 2, x i + h 2 k 2) k 4 = f (t i + h, x i + hk 3 ) k 1 = hf(t i, x i ) k 2 = hf(t i + h 2, x i + k 1 2 ) k 3 = hf(t i + h 2, x i + k 2 2 ) k 4 = hf(t i + h, x i + k 3 ) } x i+1 = x i + h k 1 6 + k 2 3 + k 3 3 + k 4 6 x i+1 = x i + k 1 6 + k 2 3 + k 3 3 + k 4 6

H22 1 1 3 (1) (2) 1. (x(0) = 1) h = 0.1 h = 0.05 ( ) h 2. Mathematica (1) dx dt = x 0 t 1 (2) dx dt = x sin (t) 0 t 50

4 (1)-(3) h = 0.05 Mathematica (1) dx dt = t 1 x 2, x(0) x(0) = 0.05 = 0 0 t 5 (2) t dx dt = x + t 2 + x 2, x(0) = 1 1 1 t 10 (3) dx dt = x 1 + t + cos t, x(0) = 1 0 t 100

(1) dx dt = t 1 x 2, x(0) = 0.05 1: dy dx = f (x)g(y) (2) t dx dt 1: = x + t 2 + x 2, x(0) = 1 2: dx dy dx = f y x x 2 + a 2 = sinh 1 x a + C (3) dx dt sinh -1 x ( ) Mathematica ArcSinh[t] = x 1 + t + cos t, x(0) = 1 1: 1 x + P(t)x = Q(t) 2:? µ = e P(t)dt 3: d (1 + t)x =? dt

1

1 k 1 = f(t, x) k 2 = f(t + h 2, x + h 2 k 1) k 3 = f(t + h 2, x + h 2 k 2) k 4 = f(t + h, x + hk 3 ) x(t + h) = x(t) + h k 1 6 + k 2 3 + k 3 3 + k 4 6

(, ) #define DIM 2 /* ( ) */ #define DT 0.01 /* */ #define STEP_MAX 1000 /* DT*STEP_MAX = 10.0 */ void derives(double, double[], double[], int); /* */ dx dt = f (t, x) void runge_kutta(double, double, double*, double); /* */ main(){ long step; double t, x, x_next; } x=0.1; /* */ for(i=0; i<step_max; i++){ t = i*dt; euler(t, x, &x_next, DT); x = x_next; } t = 0 t = DT*STEP_MAX void runge_kutta(double t, double x, double *x_out, double h){... } double fn(double t, double x){... }

(, ) derives t x(ti) derivatives[] ti x(ti) dx/dt or f(t, x) void derives(double t, double x[], double derivatives[]){ f(t, x) derivatives[] derivative[0] = a*(x[1]- x[0]); }

(, ) runge t x(ti), h x(ti+1) x_out[] void derives(double t, double x[], double x_out[], double h){ } k 1 = f(t, x) ti k 2 = f(t + h 2, x + h 2 k 1) k 3 = f(t + h 2, x + h 2 k 2) k 4 = f(t + h, x + hk 3 ) x(t + h) = x(t) + h k 1 6 + k 2 3 + k 3 3 + k 4 6 x(ti) x(ti+1) k 1 ~k 4 derives[] x_out[] h

-

Lotka-Volterra dx dt = ax dy dt = bxy cy + dxy a: b: c: d:

5 a = 1, b = 0.03, c = 1, d = 0.025 x(0), y(0)

1963 E. N. Lorenz dx 1 dt dx 2 dt dx 3 dt = a (x 2 x 1 ) = bx 1 x 2 x 1 x 3 = x 1 x 2 cx 3 a: b: c:

6 (1) a = 10, b = 28, c = 8.0/3 3 (a) (x1, x2, x3) = (0, 2, 0) (b) (x1, x2, x3) = (0, 1.99, 0) (2)(1) (a) (b) x1 x1? t

Mathematica (1/4) Mathematica, ti x1(ti) x2(ti) x3(ti) 1) 0.000 1.00 2.00 3.00 0.001 1.02 1.97 3.03 0.002 1.05 1.94 3.08... 2) GNOME Mathematica $ mathematica 3) Mathematica SetDirectory SetDirectory[ ~/keisanki-1-2010/ ]

Mathematica (2/4) 4) {ti, x1(ti), x2(ti), x3(ti)} data data = ReadList[ data_file, {Real, Real, Real, Real}]; 5) - data {{t0, x1(t0), x2(t0), x3(t0)}, {t1, x1(t1), x2(t1), x3(t1)},... } Transpose( ) data datat datat = Transpose[data]; datat {{t0, t1, t2,... }, {x1(t0), x1(t1), x1(t2),... }, {x2(t0), x2(t1), x2(t2),...}, {x3(t0), x3(t1), x3(t2),... }}

Mathematica (3/4) 6) - datat 1 ( t, x1(t) ), ( t, x2(t) ), ( t, x3(t) ) datax = Transpose[ {datat[[1]], datat[[2]] } ]; datay = Transpose[ {datat[[1]], datat[[3]] } ]; dataz = Transpose[ {datat[[1]], datat[[4]] } ]; 3 ( x1(t), x2(t), x3(t) ) dataxyz dataxyz = Transpose[ {datat[[2]], datat[[3]], datat[[4]] } ];

Mathematica (4/4) 7) ListPlot t x1(t), x2(t), x3(t) gx = ListPlot[ datax, Joined->True, PlotRange->All] gy = ListPlot[ datay, Joined->True, PlotRange->All] gz = ListPlot[ dataz, Joined->True, PlotRange->All] 3 Show Show[gx, gy, gz] 3 x1(t), x2(t), x3(t) ListPointPlot3D[dataXYZ, BoxRatios->{1,1,1}, ViewPoint->{0.810, -2.475, 2.160}]

: 1) (2009) H21 1 2) Hirsch, M.W., Smale S., Devaney, R.L. (2007) 2 - -,