Journal of Geography 115 (6) Carbon Cycle during the Paleocene/Eocene Thermal Maximum: Reconstruction from a Marine Biogeochemical Carbon

Similar documents
* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R



第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

LAGUNA LAGUNA 10 p Water quality of Lake Kamo, Sado Island, northeast Japan, Katsuaki Kanzo 1, Ni

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

LAGUNA LAGUNA 8 p Saline wedge at River Gonokawa, Shimane Pref., Japan Saline water intrusion at estuary r

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

Hal B. MARING Robert A. DucE** ** Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, U. S. A. 1) J. E. Lovelock, R.


Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

2 94

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

2013SuikoMain.dvi


FD

untitled

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

日本海地震・津波調査プロジェクト

神奈川県西部山北南高感度地震観測井の掘削および孔内検層,Borehole Drilling and Physical Properties of the Yamakita-minami Seismic Observatory in Western Ka

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

I

untitled

Juntendo Medical Journal

mm mm , ,000 Fig. 1 Locality map of the investigation area NE SW Fi

宮本大輔 山川修治

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio


PDF用-表紙.pdf

倉田.indd



bosai-2002.dvi

474 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No.3,.1..2* (,**0) 24 Measurement of Deterioration of Frying Oil Using Electrical Properties Yoshio

地質調査研究報告/Bulletin of the Geological Survey of Japan

04-“²†XŒØ‘�“_-6.01

橡

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

Analysis of Hypoxia Dynamics Using Pelagic and Benthic Biogeochemical Model: Focus on the Formation and Release of Hydrogen Sulfide Masayasu IRIE, Shu

Altabet and Francois, 1994 Voss et al., 2001 Nakatsuka et al., 1995 CO Bacastow and Maier-Reimer 1990 Yamanaka et al., Altabet and Fr

百人一首かるた選手の競技時の脳の情報処理に関する研究

yasi10.dvi

untitled

..,,...,..,...,,.,....,,,.,.,,.,.,,,.,.,.,.,,.,,,.,,,,.,,, Becker., Becker,,,,,, Becker,.,,,,.,,.,.,,




untitled


JOURNAL OF THE JAPANESE ASSOCIATION OF PETROLEUM TECHNOLOGISTS VOL. 44, NO. 5 (Sept., 1979) Tectonic Development of the Continental Slope and its Peri


人文地理62巻4号

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

Report of Special Research from the National Institute for Environmental Studies, Japan NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES

所得の水準とばらつきの時系列的推移について-JGSSと政府統計の比較-

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

Fig. 1. Active faults in the Kanto district (after Coordinating Committee for Earthquake Prediction, 1980). A-A' PROFILE DOUGUER ANOMALY RESIDUAL ANOM


平常時火災における消火栓の放水能力に関する研究

pp Dimensional Change Card Sort ****** ** Zelazo, P. D., Carter, A., Reznick, J. S. & Frye, D Zelaz

Perrett et al.,,,, Fig.,, E I, 76


Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

ルーカス型総供給方程式の批判的吟味

;HgS 1998 ;Fe2O kg ; kg 1 Minami et al., S 33 S 34 S 36 S % 0.75% 4.21% S 34 S 34 S Ish

放水の物理的火災抑制効果に着目した地域住民の消火活動モデル

<332D985F95B62D8FAC93638BA795DB90E690B62E706466>

tikeya[at]shoin.ac.jp The Function of Quotation Form -tte as Sentence-final Particle Tomoko IKEYA Kobe Shoin Women s University Institute of Linguisti

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

( ) fnirs ( ) An analysis of the brain activity during playing video games: comparing master with not master Shingo Hattahara, 1 Nobuto Fuji

Km Km - Yuasa, Sakamoto et al,.. m WGS YK- JAM- STEC, YK- JAMSTEC, YK- JAMSTEC, YK- YK- Jarvis Jarvis YK- - Km. Km Km m m m m m /m Yuasa et al. NW Km

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

udc-2.dvi

<95DB8C9288E397C389C88A E696E6462>

The 15th Game Programming Workshop 2010 Magic Bitboard Magic Bitboard Bitboard Magic Bitboard Bitboard Magic Bitboard Magic Bitboard Magic Bitbo

ODA NGO NGO JICA JICA NGO JICA JBIC SCP

Fig. 1 Structure of a Sebaceous Follicle (Ref.1).

渡辺(2309)_渡辺(2309)

*...X Z-.....F.{..

Microsoft Word - 00_1_表紙.doc

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

06_学術.indd

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

2 ( ) i

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

NINJAL Research Papers No.8

105†^Ÿ_Ł¶†^åM“è‡Ù‡©.pwd

昭和恐慌期における長野県下農業・農村と産業組合の展開過程

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND


研究成果報告書

Effects of Light and Soil Moisture Condition on the Growth of Seedlings for Quercus serrata and Quercus variabilis NISHIMURA, Naoyuki*, OTA, Takeshi**

Transcription:

Journal of Geography 115 (6) 715-726 2006 Carbon Cycle during the Paleocene/Eocene Thermal Maximum: Reconstruction from a Marine Biogeochemical Carbon Cycle Model Keiko MATSUOKA*, Eiichi TAJIKA*, Ryuji TADA* and Takafumi MATSUI** Abstract The Paleocene/Eocene thermal maximum (PETM) is an event characterized by abrupt warming, negative excursion of carbon isotopic composition, and extinction of benthic foraminifera, and is considered to have been caused by the release of a large amount of methane and/or carbon dioxide from methane hydrate. In this study, we try to reconstruct changes of the marine carbon cycle during that period using a one-dimensional marine carbon cycle model and the data set of marine carbon isotopic composition. We find that the bioproductivities of organic carbon and carbonate, and the global mean upwelling rate rapidly increased at the carbon isotope excursion event. The lower level of the carbon isotopic composition observed after the excursion event probably resulted from a large quantity of light carbon remaining in the ocean. These results can be interpreted as follows : the warming of climate intensifies vertical mixing of the ocean, so large quantities of nutrients are supplied to the surface water from the intermediate water, resulting in an increase in the bioproductivity at PETM. Key words : Paleocene/Eocene boundary, methane hydrate, carbon cycle, climate change, modeling (Paleocene/Eocene thermal maximum: PETIVI1)) (Zachos et al., 2001; Zachos et al., 2003) * Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo ** Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo

(Koch et al., 1992; Koch et al., 1995; Cojan et al., 2000; Magioncalda et al., 2004) (Kennett and Stott, 1991; Thomas et al., 1999; Zachos et al., 2003) (Thomas et al., 1999; Zachos et al., 2003), nett and Stott, 1991), (Kennett and Stott, 1991; Thomas et al., 1999 (Kaiho, 1994; Kaiho et al., 1996; Thomas and Shackleton, 1996) Fig. 1 Changes in carbon isotope record of the planktonic foraminifera and the benthic foraminifera across the PETM. (modified from Kennett and Stott, 1991) The solid lines show changes in 813C of planktonic foraminifera (Acarinina praepentacamerata and benthic foraminifera (Nuttallides truempyi at ODP Site 690 (Kennett and Stott, 1991). The dotted lines show changes in 613C used as the boundary conditions in the model (see text). The shaded area represents the period of light carbon input from methane hydrate in the model (55.00-54.99 Ma).

(Ikeda and Tajika, 2002; Ikeda et al., 2002). et al., 1993; Dickens et al., 1997; Dickens,

Fig. 2 Schematic illustration of one-dimensional marine carbon cycle model. The ocean is separated into 38 vertical layers. The model includes diffusive and advective transports of dissolved constituents such as total inorganic carbon and 13C, bioproduction of particulate carbonate and organic matter, and downwelling and decomposition of biogenic particles.

Table 1 The parameter values used for the standard case.

Fig. 3 Variations of (A) upwelling rate and (B) productivities of organic carbon and carbonate. We assume that the ratio of production rates of organic matter and calcite is constant. The shaded areas represent the period of light carbon input from methane hydrate in the model (55.00-54.99 Ma).

Fig. 4 Variations in the vertical profiles of (A) total inorganic dissolved carbon and (B) carbon isotopic composition. The contour intervals are (A) 0.1 (mol/m3) and (B) 1.0 ( ñ).

(Late Paleocene thermal maxi- Bains, S., Corfield, R.M. and Norris, R.D. (1999): Mechanisms of climate warming at the end of the Paleocene. Science, 285, 724-727. Bains, S., Norris, R.D., Corfield, R.M. and Faul, K.L. (2000) : Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature, 407, 171-174. Berner, R.A. (1991) : A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci., 291, 339-376. Bolin, B., Bjorkstrom, A., Keeling, C.D., Bacastow, R. and Siegenthaler, U. (1981): Carbon cycle modeling. in Carbon Cycle Modeling edited by Bolin, B., SCOPE, 16. John Wiley, New York, 1-28. Bralower, T.J., Zachos, J.C., Thomas, E., Parrow, M., Paull, C.K., Kelly, D.C., Premoli Silva, I., Sliter, W.V. and Lohmann, K.C. (1995) : Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. Paleoceanography, 10, 841-865. Bralower, T.J., Kelly, D.C. and Leckie, R.M. (2002) : Biotic effects of abrupt Paleocene and Cretaceous climate events. JOIDES J., 28, 29-34. Broecker, W.S. and Peng, T.-H. (1982): Tracers in the sea, Lamont-Doherty Geological Observatory, Columbia Univ., Eldigio Press, New York, 690p. Cojan, I., Moreau, M.-G. and Stott, L.E. (2000) : Stable carbon isotope stratigraphy of the Paleogene pedogenic series of southern France as a basis for continental-marine correlation. Geology, 28, 259-262. Dickens, G.R. (2002) : Modeling the global carbon cycle with a gas hydrate capacitor : Significance for the Latest Paleocene Thermal Maximum. in Natural gas hydrates: Occurrence, distribution, and detection edited by Paull, C.K. and Dillon, W.P., Geophys. Monogr. Ser., 124, American Geophysical Union, Washington, D.C., 19-38. Dickens, G.R., O'Neil, J.R., Rea, D.K. and Owen, R.M. (1995): Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10, 965-971. Dickens, G.R., Castillo, M.M. and Walker, J.C.G. (1997): A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25, 259-262. Gibbs, S.J., Bralower, T.J., Bown, P.R., Zachos, J.C. and Bybell, L.M. (2006) : Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum : Implications for global productivity gradients. Geology, 34, 233-236. Hsu, K.J. and McKenzie, J.A. (1985) : A"Strangelove" ocean in the earliest Tertiary. in The carbon cycle and atmospheric CO2: Natural variations Archean to present edited by Sundquist, E.T. and Broecker, W.S., American Geophysical Union, Washington, D.C., 487-492. Ikeda, T. and Tajika, E. (2002) : Carbon cycling and climate change during the last glacial cycle inferred from the isotope records using an ocean biogeochemical carbon cycle model. Glob. Planet. Change, 35, 131-141. Ikeda, T., Tajika, E. and Tada, R. (2002): Carbon cycle during the last 315,000 years : Reconstruction from a marine carbon cycle model. Glob. Planet. Change, 33, 1-13. Kaiho, K. (1994) : Planktonic and benthic foraminiferal extinction events during the last 100 m.y. Palaeogeogr., Palaeoclimatol., Palaeoecol., 111, 45-71. Kaiho, K., Arinobu, T., Ishiwatari, R., Morgans, H. E. G., Okada, H., Takeda, N., Tazaki, K., Zhou, G., Kajiwara, Y., Matsumoto, R., Hiraki, A., Niitsuma, N. and Wada, H. (1996): Latest Paleocene benthic foraminiferal extinction and environmental changes at Tawanui, New Zealand. Paleoceanography, 11, 447-465. Katz, M.E., Pak, D.K., Dickens, G.R. and Miller, K.G. (1999) : The source and fate of massive carbon input during the Latest Paleocene Thermal Maximum. Science, 286, 1531-1533. Kelly, D.C., Bralower, T.J., Zachos, J.C., Premoli Silva, I. and Thomas, E. (1996) : Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology, 24, 423-426. Kennett, J.P. and Stott, L.D. (1991) : Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353, 225-229. Koch, P.L., Zachos, J.C. and Gingerich, P.D. (1992) : Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/ Eocene boundary. Nature, 358, 319-322. Koch, P.L., Zachos, J.C. and Dettman, D.L. (1995) : Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA). Palaeogeogr., Palaeoclimatol., Palaeoecol., 115, 61-89. Kvenvolden, K.A. (1988): Methane hydrate - A major reservoir of carbon in the shallow geosphere? Chem. Geol., 71, 41-51. 725

Magioncalda, R., Dupuis, C., Smith, T., Steurbaut, E. and Gingerich, P.D. (2004): Paleocene-Eocene carbon isotope excursion in organic carbon and pedogenic carbonate: Direct comparison in a continental stratigraphic section. Geology, 32, 553-556. Schmitz, B., Speijer, R.P. and Aubry, M.-P. (1996): Latest Paleocene benthic extinction event on the southern Tethyan shelf (Egypt): Foraminiferal stable isotopic ( ĉ13c, ĉ18o) records. Geology, 24, 347-350. Stoll, H.M. and Bains, S. (2003) :Coccolith Sr/Ca records of productivity during the Paleocene-Eocene thermal maximum from the Weddell Sea. Paleoceanography, 18, PA1049. Svensen, H., Planke, S., Malthe-S renssen, A., Jamtveit, B., Myklebust, R., Eidem, T.R. and Rey, S.S. (2004): Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429. 542-545. Thomas, D.J., Bralower, T.J. and Zachos, J.C. (1999): New evidence for subtropical warming during the late Paleocene thermal maximum : Stable isotopes from Deep See Drilling Project Site 527, Walvis Ridge. Paleoceanography, 14, 561-570. Thomas, D.J., Zachos, J.C., Bralower, T.J., Thomas, E. and Bohaty, S. (2002) : Warming the fuel for the fire : Evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology, 30, 1067-1070. Thomas, E. and Shackleton, N.J., (1996) : The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies. in Correlation of the early Paleogene in northwest Europe edited by Knox, R.W.O'B., Corfield, R.M. and Dunay, R.E., Geol. Soc. Spec. Publ., 101, 401-441. Wigley, T.M.L. and Raper, S.C.B. (1987) : Thermal expansion of sea water associated with global warming. Nature, 330, 127-131. Yamanaka, Y. and Tajika, E. (1996) : The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle. Studies using an ocean biogeochemical general circulation model. Glob. Biogeochem. Cycles, 10, 361-382. Zachos, J.C., Lohmann, K.C., Walker, J.C.G. and Wise, S.W. (1993) : Abrupt climate change and transient climates during the Paleogene : A marine perspective. J. Geol., 101, 191-213. Zachos, J.C., Pagani, M., Sloan, J.C., Thomas, E. and Billups, K. (2001) : Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686-693. Zachos, J.C., Wara, M.W., Bohaty, S., Delaney, M.L., Petrizzo, M.R., Brill, A., Bralower, T.J. and Premoli Silva, I. (2003): A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science, 302, 1551-1554. Zachos, J.C., Rohl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L.J., McCarren, H. and Kroon, D. (2005) : Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Scicence, 308, 1611-1615.