橡Taro11-卒業論文.PDF



Similar documents
MOSFET HiSIM HiSIM2 1

jse2000.dvi


dプログラム_1

24.15章.微分方程式

Ł\”ƒ-2005

,..,,.,,.,.,..,,.,,..,,,. 2

untitled

13 2 9

330


0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

第85 回日本感染症学会総会学術集会後抄録(I)

第52回日本生殖医学会総会・学術講演会

N88 BASIC 0.3 C: My Documents 0.6: 0.3: (R) (G) : enterreturn : (F) BA- SIC.bas 0.8: (V) 0.9: 0.5:

I [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X X n ): µ X N(µ, σ 2 /n) Z = X µ σ/ n N(, 1) < α < 1/2 Φ(z) =.5 α z α

S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T,

サイバネットニュース No.121

devicemondai

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

h = h/2π 3 V (x) E ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 関 数 値

Microsoft Word - 章末問題

Acrobat Distiller, Job 2

改訂版 :基本的な文字化の原則(Basic Transcription System for Japanese: BTSJ)

第101回 日本美容外科学会誌/nbgkp‐01(大扉)

27巻3号/FUJSYU03‐107(プログラム)

tnbp59-20_Web:P1/ky108679509610002943

パーキンソン病治療ガイドライン2002

KT

本文27/A(CD-ROM

A B C D E F G H J K L M 1A : 45 1A : 00 1A : 15 1A : 30 1A : 45 1A : 00 1B1030 1B1045 1C1030


46 Y Y Y Y 3.1 R Y Figures mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y Y Figure 5-

untitled

高齢化の経済分析.pdf

山田直巳109‐121/109‐128


( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

Part () () Γ Part ,

A A. ω ν = ω/π E = hω. E

1 P2 P P3P4 P5P8 P9P10 P11 P12

kou05.dvi

untitled

卒論 提出用ファイル.doc


f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

n S (n) = n S (n) S (n) S 0 (n) S (n) 6 4 S (n) S (n) 7 S (n) S 4 (n) 8 6 S k (n) 0 7 (k + )S k (n) 8 S 6 (n), S 7 (n), S 8 (n), S 9 (

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

Part. 4. () 4.. () Part ,

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

Lecture on

REALV5_A4…p_Ł\1_4A_OCF

untitled

「都市から地方への人材誘致・移住促進に関する調査」

<91498EE88CA D815B2E786C73>

〔 大 会 役 員 〕

橡本体資料+参考条文.PDF


(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

30


3

untitled

example2_time.eps

1 1 ( ) ( % mm % A B A B A 1

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

< >

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

untitled

熊本県数学問題正解

平成18年度弁理士試験本試験問題とその傾向

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

(1) (2) (3) (4) (5) 2.1 ( ) 2

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

0302TH0130.indd

. (.8.). t + t m ü(t + t) + c u(t + t) + k u(t + t) = f(t + t) () m ü f. () c u k u t + t u Taylor t 3 u(t + t) = u(t) + t! u(t) + ( t)! = u(t) + t u(

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

" " " " "!!

note2.dvi

untitled

橡Taro9-生徒の活動.PDF

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI


A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

i I

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

IA

QMI_10.dvi

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

Transcription:

Recombination Generation Lifetime 13 9

1. 3. 4.1. 4.. 9 3. Recombination Lifetime 17 3.1. 17 3.. 19 3.3. 4. 1 4.1. Si 1 4.1.1. 1 4.1.. 4.. TEG 3 5. Recombination Lifetime 4 5.1 Si 4 5.. TEG 6 6. Pulse Scanning C-V Generation Lifetime 7 7. 9 8. 9. Appendix n p 3 31 Appendix 34 --

1. CPUHDD DRAM 1 Pulse Scanning C-V Generation Lifetime Recombination Lifeitime Recombination Generation Lifetime -3-

..1. n p ( Efn Ei) n= n i exp kt ( Efp Ei) p= n i exp kt Appendix.1 Appendix. E fn Efp.1. np = n i.3 n p ni majority carrier minority carrier ( n) ( p) ( ).4 pn ni.4.3 GaAs Si Si -4-

.1. 4 3 1.85-1 E g E g a - -1 1 [K π/a] trap.1. Si n P E c G R E g E v p P, N.... G -5-

G = α N.5 α N n = G τ g.6 n τ g.. R dn dt dn n = R = dt τ r.7 τ r G R.3 pn ni R.3. R n.3. np p β R = β np.8 G R αn = βn p P P.9 n P, pp.. Na pp Na R = β n N P a.1-6-

n 1 [/Sec] n P n P E c G R E g E v p P, N.3. ( ) R= βn p = β n + n p P P P P.11 G G.1 n n n= n n P P.13 np np.13 n n P dn dt P n = R τ P r.14 n R = βnppp = τ P r.15-7-

τ r 1 β p P.16 τ r n G τ P g.17 np np G + n1 = R.18 n τ P i n τ p g r P.19 pp Na np ni τ τ r g ni N a. τ τ r g ni N d.1-8-

...4..5. P E c N E fn E fp E v.4. P N.5..6..6. -9-

.7. P N W.7..8. Ec P N E v E fp E fn E c.8. -1 -

Diffusion potential built in potential q ϕ bi ϕ bi.9. ϕ bi q ϕ bi = Efn E fp. ϕ bi P N qϕ bi E i E fp qϕ E bi fp E fn E i E v E fn E i E c.9. ψ ρ = = + d ψ de s q * * dx dx εs ε εs ε ( N N p n) D A.3-11 -

* ρ Ω cm q c ε ε s s -3-3 F/cm ND NA cm p n cm.3 d ψ = dx.4 N N + p n= D A.5 NA n.9. Efn Ei qϕn ϕn.5 ND n p NA.3 ϕ n 1 kt N ( Ei Ef) = ln q q n x wn D i.6 ϕ p 1 kt N ( Ei Ef) = ln q q n x wp i A.7.6.7 ϕ bi kt N ln DNA ϕbi = ϕn ϕp = q n i.8 Si.1..1. wp wn -1 -

p n.3 d ψ dx q = A ε ε * s ( N N ) D.9 q(n D N A ) qn D w p w n x qn A W.1..1..9 d ψ qn A wp x < = * dx ε ε s.3 d ψ < x wn dx qnd = ε ε * s.31-13 -

w p E w n x ϕ bi E max ψ (a) ϕ bi (b) W.11. a b x qn w = qn w A p D n.3 W W = w + w p n.33.11. a.3.31 ( ) E x ( + p) dψ qna x w = = dx ε ε * s p w x <.34 ( ) E x ( ) qn x qn x w = E + = D D max * * εs ε εs ε n < x wn.35 Emax x= E qn w qn w = = D n A p max * * εs ε εs ε.36-14 -

.34.35 ϕbi ϕ bi wn ( ) ( ) ( ) wn E x dx E x dx E x dx w p w p = = A p qndwn * * s s qn w = + = ε ε ε ε 1 E max W.37 ϕbi.11. a.3.37 W = * ε s ε N A + N D ϕbi q NAND.38 + NA ND wp wn wp W W w = n * ε s εϕ bi qn D.39 ( ) = Emax + * E x qn x ε s D ε.4 ND x W w n E qn W = D max * εs ε.41-15 -

( ) E x ( ) qnd W + x x = = Emax 1 ε ε W * s.4 ψ x x x = Edx= Emax x C C + W.43 ( ) -16 -

3. Recombination Lifetime 3.1. 3.1. 3.. a 3.1. 3.. b If Ir 3.1. P N P N Recombination E f p E v E f n Recombination Recombination E f p E v E c E f n Recombination E c (a) (b) 3.. a b 3.3. -17 -

3.3. 3.4. Function Generator FunctionGenerator DC 3.4. -18 -

3.. 3.5. 3.5. Recombination Lifetime 1 R 11 1kΩ R 1 1k Ω R3 1 1 Ω 3.6. TEG 3.6. Recombination Lifetime R 11 1kΩ R 1 1k Ω R3 1 1 Ω -19 -

3.3. 3.7. 3.7. I f I r t t τ r erf t If τ = I + I r f r 3.1 3.1 I f I r t τ Appendix erf x r erf ( ) x = y dy π x exp 3. I f I r t 3.7. - -

4. Si TEG 4.1. Si Si 3 4 V 4.1.1. ++ + 4.1. Si 1 3 5-1 -

4.1.. 4.. 4.3. E c E f E f E v 4.. E c E f E f E v 4.3. 4.4. - -

E c E f E f E v 4.4. E c E f E f E v 4.5. 4.. TEG Metal SiO P N 4.6. TEG TEG 4.6. Metal -3 -

5. Recombination Lifetime 5.1. Si 4 Si 5 I f I r τ r 5 5.1..5 7 ma 4.1.1. τ r τ r.1µ Sec 4.1.. 5.1. I f I r Recombination Lifetime τ r I f Recombination Lifetime R.L. 5.. I f I r τ r I I + I x τ r 5.3. I f I r τ r I f I r erf t τ r ( ) f f r -4 -

5.. I f Recombination Lifetime τ r 5.3. Recombination Lifetime τ r 1-5 -

5.. TEG TEG 5.3. 5.4. 5.4. Recombination Lifetime τ r TEG TEG 5.3. 5.4. R.L. R.L. -6 -

6. Pulse Scanning C-V Generation Lifetime MOS Generation Lifetime G.L. Pulse Scanning C-V Metal SiO N-Si (a) c d V b (b) C a V V a b c t (c) c d b a t 6.1. MOS a b Pulse Scanning C-V c 6.1. a MOS 6.1. c 6.1. b C V t V - n cm qn = Cox V 6.1 q - n t cm /Sec n = t Cox V q 6. 6.. -7 -

6.. 11-8. 1. 1 cm Sec [ ] G.L. Sec τ r τ g τ r τ g.1..1 τ τ r g ni N D 6.3 ND n i 15-3 -3 TEG ND 1. 1 cm n i 1.38 1 cm τ r τ g τ r 9 µ sec τ g sec. 1-8 -

7. 8. -9 -

1 S.Kawazu, T.Matsukawa and H.Nakata:"Pulse Scanning C-V Technique for The Analysis of Carrier Generation in Silicon", Electro-chamical Society Spring Meeting Extended Abstract pp6-633 R.H.Kingston, Associate member, IRE:"Switching Time in Junction Diodes and Junction Transistors" 3 W.shockley:"The Theory of p-n Junction in Semiconductors and p-n Junction Transistors" 4 S.M. :" " 1987 5 :" " 199 6 :" " 1988 7 :" " 1986 8 :" " 1995 9 :" " 1985 1 A.S.Grove :" " 1995 11 :" " 198 1 :" " 199 13 B.G.Streetman :" " 1991 14 :" 3 " 1978 15 :" " 199-3 -

. Appendix. n p N f E ( E) = N f.1 N f n E f p E 1 f n ( E) = E E 1 exp kt fn +. 1 1 f p ( E) = 1 = E Efp E Efp 1+ exp 1+ exp kt kt.3. E E fn 3kT E E E E fn ( ) fn f n E exp kt.4 E E E E fn ( ) fp f n E 1 exp kt.5 E fp n p -31 -

Ec ( E) n= N f de n E E = N exp Ec kt fn de E E fn E Efn = N exp exp kt kt E Efn = N ktexp kt Ec Efn Ec Efn = N ktexp ktexp kt kt Ec Efn = NkTexp kt Ec.6 Ev ( E) p = N f de p E Efp = N exp de E v kt E E fp E E fp = N exp exp kt kt E Efp = N ktexp kt Efp Ev Efp = N ktexp ktexp kt kt Ev Efp Efp Ev = NkTexp = NkTexp kt kt Ev Ev.7 n i E i -3 -

Ec Efn n= NkTexp kt E E c Ei fn Ei = NkTexp exp kt kt Efn Ei = ni exp kt.8 Efp Ev p = NkTexp kt Ei Efp Ei Efp = NkTexp exp kt kt Ei Efp = ni exp kt.9 E fn E fp pn ni Efn Ei Ei Efp n p = ni exp niexp kt kt Efn Efp = ni exp kt.1 E fn E fp n p= n i.11-33 -

Appendix. erf x t dt π ( ) = x exp.1 x x x 1 3 erf ( x) = xf 1 1 ; ; x π. d y dy + ( ) = x c x ay dx dx.3 ( ) = 1 1(, ; ) = (, ; ) ( ) y x F ac x M a c x ax a a+ 1 x = 1 + + +, c, 1,, c1! c( c+ 1)!.4 x 1 x 3 erf( x) exp x F 1; ; x π = 1 1.5 x 3 exp x 1F1 1; ; x a π = n= n.6-34 -

a x exp = x π x an = a 1 n + n = 1,, n 1.7.5 x.5 erf x x 5. erf x x 1 x sec x erfcx erf erfc ( x) = 1 erfc( x) x t dt x π ( ) = exp.8 erfc x F,1;, x ( ) exp x 1 1 π x x.9.9 x x erfc ( x) ( ) ( ) exp x 1 1 1 3 = + + + + + π x x x x x.1 1.E 9 x 16 ( ) exp x 1 1 8 erf( x) = 1 + + + π x x x.11.1.11-35 -

x.7 x.11.1. 1 1 sn = an, v= n+, mk = 8 k a exp x = π yes x? no a s n n x exp = x π = a 1 v = ; = n n 1 n ( n ) x an = an 1, ( n = n ) v + 1 s = s + a n = n v = v+ 1 ( ) m k = = 8 z = x m 8 zk = x+ = x+ k = z x 1 mk = mk 1 ( ) yes a > 1.E 1? n m >? no yes no erf ( x) = s n a erf ( x) = 1 z k.1. erf x BASIC -36 -

.1. BASIC x erf x erf1 erfx x erf 1!********************************************! ERROR FUNCTION PROGRAM 3! erf x :erf1 4!******************************************** 5 DIM A1 6 DIM S1 7 DIM M1 8 DIM Z1 9 PRINT "X=" 1 INPUT X 11 PRINT X 1 IF XTHEN GOTO 4 13 A = *X/SQR PI *EXP -X^ 14!PRINT "A =",A 15 N= 16 N=N+1 17 AN = X^/ N+ 1/ *A N-1 18!PRINT "N=",N,"AN =",A N 19 S =A x A = exp x π A S n x = A 1 n + = A n 1 SN =A N +SN-1 1!PRINT "SN =",S N IF AN 1.E-1 THEN GOTO 37 A n 1.E 1 3 IF AN 1.E-1 THEN GOTO 16 4 M =8 S = A + S n n n 1 x M = 8-37 -

5 Z =X 6 K= 7 K=K+1 8 ZK =X+ MK-1 /Z K-1 9 MK =M K-1-1/ 3!PRINT "K=",K,"MK =",M K,"ZK =",Z K 31 IF MK = THEN GOTO 33 M k 3 IF MK THEN GOTO 7 33 E=1-EXP -X^ /SQR PI /Z K 34!PRINT "E=",E 35 PRINT "erfx =",E 36 GOTO 38 37 PRINT "erfx =",S N-1 38 END Z Z k M = x k M = x+ Z Mk 1 k 1 k 1 = 1 exp x 1 π E = Z k.. erf x 1!*******************************************! ERROR FUNCTION PROGRAM 3! Y=erf X :erf 4!******************************************* 5 DIM X1 6 DIM A1 7 DIM S1 8 DIM M1 9 DIM Z1 1 PRINT "******** Y =1 ********" 11 PRINT "Y=" 1 INPUT Y 13 PRINT Y -38 -

14 X1=3.1965 15 X = 16 B= 17 Q= 18 Q=Q+1 b 1 19 XQ =X1* -1^ B * 1/^ Q-1 +X Q-1 Xq = X ( 1) X q 1 q + IF XQ THEN GOTO 9 X q X q 1 A = *X Q /SQR PI *EXP - X Q ^ A= exp X π N= 3 N=N+1 4 AN = X Q ^/ N+ 1/ *AN-1 5 S =A 6 SN =A N +SN-1 7 IF AN 1.E-1 THEN GOTO 4 A n 1.E 1 8 IF AN 1.E-1 THEN GOTO 3 9 M =8 3 Z =X Q 31 K= 3 K=K+1 33 ZK =X Q + M K-1 /Z K-1 34 MK =M K-1-1/ X q 35 IF MK= THEN GOTO 37 M k 36 IF MK THEN GOTO 3 37 F=1-EXP - X Q ^ /SQR PI /ZK 38 E=F 39 GOTO 41 A n 1 1 X q = A 1 n + M = 8 Z Z = X q k M M = Xq + Z k = Mk 1 n 1 k 1 k 1 1 q exp X 1 π F = Z k q -39 -

4 E=S N-1 1 1 41 IF 1/^Q-1 ^ -1 THEN GOTO 45 45 4 IF Y-ETHEN GOTO 44 43 IF Y-E1.E-11 THEN GOTO 5 Y E 1.E 11 44 IF E-Y1.E-11 THEN GOTO 5 45 IF YETHEN GOTO 48 46 IF YETHEN B= 47 GOTO 18 48 B=1 49 GOTO 18 5 PRINT "X=",XQ 51 END > 1 q.3. erf x x erf x.4. erf x -4 -