( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)



Similar documents
(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

i

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y


6. Euler x

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

1


I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

DVIOUT

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

di-problem.dvi

24.15章.微分方程式

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29


. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s


2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

i 18 2H 2 + O 2 2H 2 + ( ) 3K


y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

04.dvi


() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

J1-a.dvi

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (


(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

I 1

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

C:/KENAR/0p1.dvi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0)

入試の軌跡

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

webkaitou.dvi

v er.1/ c /(21)

A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

2011de.dvi

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

pdf

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

Transcription:

rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( a) ( b) a > b > 0 a < nb n A A B B A A, B B A = ( A A )A

( 408 355) V 4: 2 a > 0, b > 0 m, n ma > b, nb > a a, b a : b, m, n

5: 4 a, b, c, d, a : b=c : d m, n, ma > nb = mc > nd, ma = nb = mc = nd, ma < nb = mc < nd, 7: a : b > c : d ma > nb mc nd m, n

a > b > 0 nb > a n b = 1 a > 1 n > a, 1 n < 1 a ϵ = 1 a ϵ N n n > N 1 0 ϵ n lim n 1 n = 0

http://www.math.ubc.ca/ cass/euclid/byrne.html Oliver Byrne s edition of Euclid, http://aleph0.clarku.edu/ djoyce/java/elements/elements.ht David B, Joyce ( ), ( ), ( ), ( ) : ; (2011/5/25) ISBN-10: 4320019652 ISBN-13: 978-4320019652

ブルバキの評価 ニコラ ブルバキ 1886 年生まれ モルダビア出身の架空の人物 数学原論 の著者 1960 年代に構造主義という一大旋風を巻き起こした

(1872 ) A x, B y x < y A B (1) A B (2) A B B A. (3) A B

(1) (2) 2/3 A B (2) (3) A B (2)

S α s S < m R α (1) s α (2) α < α α < s S na α α a < α (2) α a < na, α < (n + 1)a. (1)

a 1 < a 2 < a 3 < < a n < < M a n α α M M

f : X f Y : 1 1 x 1 x 2 f(x 1 ) f(x 2 ) : y y = f(x) x X Y X Y Y X

1, 2, 1 2 3 4 5 1 1 2 3 4 5 1 1 1 1 2 1 2 3 4 5 2 2 2 2 3 1 2 3 4 5 3 3 3 3 4 1 2 3 4 4 4 4 4 4 5 2 1:1 : 1, 2,?

G. (1845 1918) 19

( ) ( )ϕ(x) x, x, x :

( 16-20 ) ( ) 18 ( 38 1905 )

( ) : ( ) ( )

40 44 1 43 : : 53 :

: 2500 1990

S n = 1 + r + r 2 + + r n 1 n 1 + r 2 1 + r + r 2 3 1 r 2 = (1 r)(1 + r), 1 r 3 = (1 r)(1 + r + r 2 ),. 1 r n = (1 r)(1 + r + r 2 + + r n 1 ) 1 1 + r + r 2 + + r n 1 = 1 rn 1 r. a + ar + ar 2 + + ar n 1 = a 1 rn 1 r.

r < 1 r n 0 (n ) S n 1 1 r. n S n S n r = 1 1+( 1)+( 1) 2 +( 1) 3 + = (1 1)+(1 1)+ = 0? ( F = ma ) ζ( 1) = 1 + 2 + 3 + + n + = 1 12

0. 9 = 0.9 (1 + ( 1 10 )1 + ( 1 10 )2 + ( 1 10 )3 + ) = 9 1 10(1 10 1 ) = 1. 0.9, 0.99, 0.999, 0.9999, 1 0. 9 = 1

lim x α f(x) = β ϵ δ x α < δ f(x) β < ϵ

: x x x

. :

: lim f(a + h) = f(a), h 0 f(x) x = a, ϵ > 0 δ( h < δ f(a + h) f(a) < ϵ) 2

{ 0 x f(x) = 1 p x = q p, p, q, p > 0,, x ϵ δ (x δ, x + δ). ϵ ϵ p 0 p 1 < ϵ 0 p 0 < ϵ p 0 q 1 p < x < q p x

: f(x) [a, b], f(a) > 0, f(b) < 0 [a, b] f(c) = 0 f(x) > 0 A A A c f(c) > 0 f(c) < 0 f(x) = 0,,

x 3 5x + 1 = 0 x 1 x c x 2 y(x 1 ) y(x c ) y(x 2 ) 0.000000 0.500000 1.000000 1.000000-1.375000-3.000000 0.000000 0.250000 0.500000 1.000000-0.234375-1.375000 0.000000 0.125000 0.250000 1.000000 0.376953-0.234375 0.125000 0.187500 0.250000 0.376953 0.069092-0.234375 0.187500 0.218750 0.250000 0.069092-0.083282-0.234375 0.187500 0.203125 0.218750 0.069092-0.007244-0.083282 0.187500 0.195312 0.203125 0.069092 0.030888-0.007244 0.195312 0.199219 0.203125 0.030888 0.011813-0.007244 0.199219 0.201172 0.203125 0.011813 0.002282-0.007244 0.201172 0.202148 0.203125 0.002282-0.002482-0.007244 0.201172 0.201660 0.202148 0.002282-0.000100-0.002482 0.201172 0.201416 0.201660 0.002282 0.001091-0.000100 0.201416 0.201538 0.201660 0.001091 0.000496-0.000100 0.201538 0.201599 0.201660 0.000496 0.000198-0.000100 0.201599 0.201630 0.201660 0.000198 0.000049-0.000100 0.201630 0.201645 0.201660 0.000049-0.000026-0.000100 0.201630 0.201637 0.201645 0.000049 0.000012-0.000026 0.201637 0.201641 0.201645 0.000012-0.000007-0.000026 0.201637 0.201639 0.201641 0.000012 0.000002-0.000007

, [a, b] [a, b], ( 1, 1) y = tan( π 2x),?

2 ( ) 2

O. O x x x < r x O r

f : X f Y Y O f 1 (O) y = x x < 0 y = 1, x 0 y = 1

X Q π < p < π A A ( π, π) Q A [ π, π] Q

) ( )

A f B Domain A f B Range Codomain A (arrow)f B x y x (maps to ) y x y

A f B g C A f B A h C g C h = g f g f z = g(f(x)). x A, z C

f 1 f = id A, f f 1 = id B id A A x id x f 1 f : log x e x e log x = x, log e x = x.

( ) fs = id B B? A idb A B B A A B rf = id A A f B ida? f B y = f(x) A B

Fluent:, x Fluxion:, ẋ

ライプニッツの業績: ブルバキ 数学史 より

運動学から始まった数学は 厳密なものではなかったが その応用範 囲は広大無辺のものであった その切れ味は現在でもなまっていない しかし

y x y y dx dy x x x 1 2 x = x 2 x 1, y = y 2 y 1 y (x) = lim x 0 y x = lim x 0 y(x + x) y(x) (x + x) x dy = y dx

(f(x)g(x)) = = lim x 0 = lim x 0 = f g + fg lim x 0 f(x + x)g(x + x) f(x)g(x) (x + x) x (f(x) + f)(g(x) + g) f(x)g(x) f x g(x) + x lim f(x) g x 0 x + lim x 0 ( f)( g) x ( f)( g) 2 lim = 0 x 0 x x, f, g 1 ( f)( g) 2 2 1

y = f(g(x)) dy dx = df dg dg dx d(x 2 + 1) 3 dx = d(x2 + 1) 3 d(x 2 + 1) d(x2 + 1) dx = 3(x 2 + 1) 2 2x f x = f g g x x 0 g = 0 f(z) = f (z) z + ϵ z, z 0 ϵ 0

y = f(x) x x = f 1 (y) x y Inverse y = f(x) f(x) dy dx = 1 dx dy x 1 f (x) x

F (x, y) = 0 y = ϕ(x) 1 y = f(x) (a, f(a)) y f(a) = k(x a). k = lim h 0 f(a + h) f(a) (a + h) a = f (a) dy = f (x)dx 2 z = f(x, y) (a, b, f(a, b)) z f(a, b) = k(x a) + l(y b) k = lim h 0 f(a + h, b) f(a, b) (a + h) a l = lim h 0 f(a, b + h) f(a, b) (b + h) b = f x = f y dz = f f xdx + ydy

f f x x 1 f(x, y) = 0 df = f f xdx + ydy = 0. f y 0 (a, b, f(a, b)) y = ϕ(x) ϕ (x) = dy f dx = x. f y

4 1906,, 1959)

θ = l r ( ) θ r l π = =3.141592653589793238462643383279...

sin θ θ cos θ 1 tan θ < tan θ (cos θ, sin θ) θ lim θ 0 sin θ θ 0 < θ < π 2, = 1 sin θ < θ < tan θ cos θ sin θ < 1 θ < 1 sin θ cos θ < sin θ < 1 θ θ 0 cos θ 1, sin θ θ 1

cos(α β) = cos α cos β + sin α sin β y y A α α β C Β β α β x 1 x 1 D A(cos α, sin α), B(cos β, sin β), C(cos(α β), sin(α β)), D(1, 0). AB = CD (cos α cos β) 2 + (sin α sin β) 2 = (cos(α β) 1) 2 + (sin(α β)) 2 cos 2 α 2 cos α cos β + cos 2 β + sin 2 α 2 sin α sin β + sin 2 β = cos 2 (α β) 2 cos(α β) + 1 + sin 2 (α β) 2 2 cos α cos β 2 sin α sin β = 2 2 cos(α β)

(sin x) sin(x + h) sin x = lim h 0 h 2 cos( x+h+x = lim 2 ) sin(x + h x) h 0 h = lim h 0 cos(x + h 2 )sin h 2 h 2 = cos(x) (cos x) cos(x + h) cos x = lim h 0 h 2 sin( x+h+x = lim 2 ) sin(x + h x) h 0 h = lim h 0 sin(x + h 2 )sin h 2 h 2 = sin(x)

y = a x, x = 0 1 y = e x. x = 0 lim h 0 e 0+h e 0 h e h 1 = lim 1 h 0 h h 0, e h = 1 + h, e = (1 + h) 1 h n e = (1 + 1 n )n (e x ) = lim h 0 e x+h e x h = e x lim h 0 e h 1 h = e x. e = =2.718281828459045...

e x f(x) = e x (1 + x) f (x) = e x 1. x 0 f (x) 0 + f(x) 0 f (x) > 0 x > 0 e x > 1 + x > x ex x > 1. x x 2n e x 2n x 2n e x > 1. e x 2n x > 1 x n > ( 1 2n )2n x n x 2n 2n. (e x )2n > ( 1 2n )2n. (x ).

y = e αx α x = 1/α y = x n lim x e x x n = ( )

y = e x x = log y y = log x x = e y d log x dx = dy dx = 1 dx dy = 1 de y dy = 1 e y = 1 x d log x = dx x log x = x 1 dt t

xy x xy dt log(xy) = 1 t = dt 1 t + dt x t t = xu t u x dt y = t + dt = log x + log y u 1 1 log(x 2 ) = log(xx) = log x + log x = 2 log x, log(x n ) = n log x. log(y) = log(x y x ) = log x + log y x, log( y x ) = log y log x, y = 1 log( x 1 ) = log 1 log x = log x.

d log(x) = dx x

e 10 x = 10 y y = log 10 x. log e x = log e 10 y = y log e 10 = log 10 x log e 10. log e x = 2.3 log 10 x log 10 2 = 0.3, log 10 3 = 0.5, log 10 5 = 0.7 ( ) ( )

y = log x x > 0 x < 0 d log x dx = d log( x) d( x) d( x) dx = 1 x ( 1) = 1 x. x d log f dx = d log f df df dx = 1 f df dx. f (x) = f(x) d log f dx.

y = sin x y x y = sin x x π 2 x π 2 y = arcsin x 1

π 2 x π 2, 0 x π, y = sin x x x = arcsin y y = cos x x x = arccos y π 2 < x < π 2, y = tan x x x = arctan y

f f 1 sin sin 1 sin 2 x = (sin x) 2, sin 2 x = 1 (sin x) 2, sin 1 x 1 sin x, arcsin, arccos, arctan US asin, acos, atan tan tg, arctan arctg, atg

y = arctan x 1.5 y 1 0.5 0-10 -5 0 5 10 x -0.5-1 -1.5

y = arcsin x π 2 y π 2, x = sin y d arcsin x dx = dy dx = 1 dx dy = 1 d sin y dy = 1 cos y π 2 y π 2 cos y 0. d arcsin x dx = 1 1 sin 2 y = 1 1 x 2.

y = arccos x 0 y π, d arccos x = dy dx dx = 1 = dx dy 1 d cos y dy x = cos y = 1 sin y 0 y π sin y 0. d arccos x 1 1 = = dx 1 cos 2 y 1 x 2. y = arctan x π 2 < y < π 2, d arctan x dx = cos 2 y = = dy dx = 1 dx dy = 1 d tan y dy 1 1 + tan 2 y = 1 1 + x 2. x = tan y = 1 1 cos 2 y

e ix = cos x + i sin x sin x = eix e ix, cos x = eix + e ix 2i 2

sinh = ex e x 2 cosh = ex + e x 2 tanh = ex e x e x + e x

t (x, y), t (x, y) $> gnuplot gnuplot> set parametric gnuplot> plot cos(t)**3,sin(t)**3 1 0.8 0.6 0.4 0.2 0-0.2-0.4-0.6-0.8 cos(t)**3, sin(t)**3-1 -1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 x = f(t), y = g(t) dx = f (t)dt, dy = g (t)dt. t

y (n) (x) = (y (n 1) (x)). d n 1 y d n y dx n = d( dx n 1). dx n [f(x)g(x)] (n) = nc k f (n k) (x)g (k) (x). k=0

n = 1 [f(x)g(x)] = f (x)g(x) + f(x)g (x). n = m [f(x)g(x)] (m) = m mc k f (m k) (x)g (k) (x). k=0 m [f(x)g(x)] (m+1) = mc k [f (m k) (x)g (k) (x)] k=0 m = mc k f (m k+1) (x)g (k) (x) + = k=0 m mc k f (m k+1) (x)g (k) (x) + m mc k f (m k) (x)g (k+1) (x) k=0 m+1 k=0 k=1 mc k + m C k 1 = m+1 C k mc k 1 f (m k+1) (x)g (k) (x). [f(x)g(x)] (m+1) = m+1 k=0 mc k f (m+1 k) (x)g (k) (x). n = m + 1

Rolle : f(x) [a, b], (a, b) f(a) = f(b), a < ξ < b, f (ξ) = 0. : [a, b] f(x) f(x) > 0 (a, b) ξ h > 0 f(ξ+h) f(ξ) h 0, ξ h ξ ξ+ h f(ξ) f(ξ h) h 0 h 0,, 0 f (ξ) = 0.

( ): f(x) [a, b], (a, b), a < ξ < b, f f(b) f(a) (ξ) =. b a f(b) f(a) a ξ b F (x) = f(x) { (f(b) f(a)) (b a) } (x a) + f(a) F (a) = F (b) = 0. F ( ξ) = 0

: f(x), g(x) [a, b], (a, b) g (x) 0 a < ξ < b, f(b) f(a) g(b) g(a) = f (ξ) g (ξ) f(b) f(a) F (x) = f(x) f(a) ( )(g(x) g(a)) g(b) g(a) F (x) F (a) = 0, F (b) = 0 F (ξ) = 0 ξ

f(0) = 0, g(0) = 0 0 < ξ < x, f(x) f(0) g(x) g(0) = f (ξ) g (ξ) lim x 0 f(x) g(x) = lim x 0 f (x) g (x). l Hopital (1661-1704), Cauchy (1789-1857).

f(b) = f(a) + f (a) (b a) + f (2) (a) (b a) 2 + 1! 2! + f (n 1) (a) (n 1)! (b a)n 1 + f (n) ( ξ) (b a) n. n!, f (x) f(x) f (2) (x) f (x) f (n) (x) f (n 1) (x),, n, f (n) ( ξ) (b a) n 0 n! f(x) = f(a) + f (a) 1! (x a) + f (2) (a) (x a) 2 + 2! + f (n) (a) (x a) n +. (n)!

F (x) = f(x) {f(a) + f (a) 1! (x a) + f (2) (a) 2! (x a) 2 + + f (n 1) (a) (x a) (n 1)! n 1 }, G(x) = (x a) n F (x) F (x) F (a) = G(x) G(x) G(a) F (a) = F (a) = = F (n 1) (a) = 0 G(a) = G (a) = = G (n 1) (a) = 0, F (x), G (x),, F (n 1), G (n 1) F (x) G(x) = F (x) F (a) G(x) G(a) = F (ξ 1 ) G (ξ 1 ), ξ 1(x a ) F (ξ 1 ) G(ξ 1 ) = F (ξ 1) F (a) G(ξ 1 ) G(a) = F (ξ 2 ) G (ξ 2 ), ξ 2(x a )...

(1821 )

f(x) = e x x = 0 ( ) R n = eθx n! xn. 0 < θ < 1 x n R n 0. e x x n = n!. n=0 n 1 1 1 x = k=0 x k + xn 1 x x < 1 R n = xn 0 x < 1 1 x

dx 1 x = log(1 x) = x 1 2 x2 1 n xn + log(1) = 0

James Gregory, 1671 arctan x x = 0 (1642 1727) Brook Taylor 1715 (arcsin x) 2 1722 Colin MacLaurin 1742 Lagrange 1772. S.A.J. Lhuilier, 1786 100

1 1 x = 1 + x + x2 + + x n + (1 + x) α α(α 1) = 1 + αx + x 2 + 2! α = 2 (1 + x) 2 = 1 + 2x + x 2. e x = 1 + 1 1! x + 1 2! x2 + + 1 n! xn + log(1 x) = x 1 2 x2 1 n xn + ( ) sin x = x 1 3! x3 + 1 5! x5 1 7! x7 + cos x = 1 1 2! x2 + 1 4! x4 1 6! x6 +

b a f (a) 1! (b a), b a 0 1 f (2) (a) 2! (b a) 2 2 f (3) (a) 3! (b a) 3 3

y(x) = arcsin x y = (1 x 2 )(y ) 2 = 1. 1 1 x 2. 2x(y ) 2 + 2(1 x 2 )y y = 0, (1 x 2 )y xy = 0. n (1 x 2 )y (n+2) (2n + 1)xy (n+1) n 2 y (n) = 0 x = 0 y(0) = 0, y (0) = 1. y (2n) (0) = 0, y (2n+1) (0) = 1 2 3 2 (2n 1) 2. y = x + 1 6 x3 + 3 40 x5 + 5 112 x7 + 35 1152 x9 +.

x tan(x) sin(x) x 4 f(x) = tan x = sin x f(0) = 0. cos x f (cos x)(cos x) (sin x)( cos x) 1 (x) = (cos x) 2 = (cos x) 2, f (0) = 1 f d(cos x) 2 d(cos x) 2 d(cos x) (x) = = dx d(cos x) dx = 2(cos x) 3 ( sin x) = 2(sin x)(cos x) 3, f (0) = 0. f (x) = 2(cos x)(cos x) 3 + 2(sin x)( 3 cos x) 4 ( sin x) = 2(cos x) 2 + 6(sin x) 2 (cos x) 4, f (0) = 2. f (4) (x) = 4(cos x) 3 (sin x)+12(sin x)(cos x) 4 +6(sin x) 2 ( 4) f (4) = 0.

tan x = x + 2 3! x3 + O(x 5 ). O(x 5 ) x 5 sin x = x 1 3! x3 + O(x 5 ). tan x sin x = 1 2 x3 + O(x 5 ) lim x 0 tan x sin x x 3 = 1 2.

y = 1 y = x y = x 2 y = x 3 x = 0 1 : 2 : 3 :

f (x) > 0 f(x) : x < x, f(x ) f(x) = (x x)f (ξ), x < ξ < x. f(x ) > f(x).

(x0,y0) (x2,y2) (x1,y1) (x0,y0) (x1,y1) (x2,y2) : y = f(x) x 0 < x 1 < x 2 y 1 < (x 2 x 1 ) (x 2 x 0 ) y 0 + (x 1 x 0 ) (x 2 x 0 ) y 2 y 1 y 0 x 1 x 0 < y 2 y 1 x 2 x 1

f (x) > 0 f(x) : x 0 < x 1 < x 2 f (x) > 0 y 1 y 0 x 1 x 0 < y 2 y 1 x 2 x 1 x 0 x 1, x 1 x 2

I 2 I

A A

f (x 0 ) x = x 0 dx, dy dy = f (x 0 ) dx (y y 0 ) = f (x 0 ) (x x 0 ) (dx, dy) III df dx = df(y(x)) dy dy dx

( ) ( 4 ) ( 287 212 )

( ) : III 4