1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

Similar documents

熊本県数学問題正解

( )

Part () () Γ Part ,

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)


ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4


A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

lecture

i

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

untitled

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

I II III 28 29


IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

高校生の就職への数学II

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C


漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y


1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

6. Euler x

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

空き容量一覧表(154kV以上)

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

入試の軌跡

i


Wide Scanner TWAIN Source ユーザーズガイド

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

分科会(OHP_プログラム.PDF

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

untitled

福祉行財政と福祉計画[第3版]

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

2011de.dvi

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

橡ミュラー列伝Ⅰ.PDF

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル

- 2 -


1 (1) (2)

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

I II

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:


a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p


(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

Transcription:

I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3 = 27 27 9 10 ( : 9 25/216, 10 27/216 = 1/8 ) 1.1 ( 2 ) (1), (2) (1) (2) (1) 1 4 1 6 (2) 2 24 1 2 6 (2) 0.5 1654 *1 1.2 ( ) 3 2 1 3 2 3 1 *1 (cf. [7]) [7] ( ) 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, 1 4 3 4 3 4, 1 4 (cf. [4]) 2: 2 3 *3 1 2 3, 1 3 2 3, 1 3 1 3 2 3 + 1 3 2 3 = 8 9 8 9, 1 9 1.2 A B 5 (a), (b) A (1) (2) (a) A 4 2 (b) A 3 2 2 *4 2.1 A, B P (A) > 0 A B P A (B) *5 P A (B) = P (A B). P (A) *2 (cf. [5]) p 90% [0.135, 0.983] ( ) *3 p n k f(p) = nc k p k (1 p) n k f(p) p p = k/n p ( ) *4 CNET JAPAN 2003/3/10 MS *5 P (B A) P A (B) A A A c ( ) 2

P A (B) A A B 2.1 ( ) A B 40 A, B A, B R R A 20/40 = 0.5 B 16/40 = 0.4 A B R R A 20 20 40 B 16 24 40 36 44 80 (M) A 18/30 = 0.6, B 7/10 = 0.7 R M R M M R F R F F A 18 12 30 2 8 10 40 B 7 3 10 9 21 30 40 25 15 40 11 29 40 80 (F ) A 2/10 = 0.2, B 9/30 = 0.3 B A (cf. [10]) *6 A, B A, B R P A (R) = 20 40 = 0.5, P B(R) = 16 40 = 0.4, P A(R) > P B (R). M B P A M (R) = 18 30 = 0.6, P B M(R) = 2 10 = 0.2, P A M (R) < P B M (R), P A F (R) = 7 10 = 0.7, P B F (R) = 9 30 = 0.3, P A F (R) < P B F (R) P A ( ) A P A (U) = P A (A) = 1 (U ), P A ( ) = 0 B, C (B C = ) P A (B C) = P A (B) + P A (C) 2.2 ( ) 2 A, B P (A B) P (A B) = P (A)P A (B) *6 (cf. [1]) 3

2.3 ( ) A C 1, C 2,, C n U C 1 C 2 C n = U C i C j = (i j) P A (C i ) = P (C i )P Ci (A) P (C 1 )P C1 (A) + P (C 2 )P C2 (A) + + P (C n )P Cn (A) 1 B n = 2, C 1 = B, C 2 = B (B ) P (B)P B (A) P A (B) = P (B)P B (A) + P (B)P B (A) 2 : P (C i )P Ci (A) = P (C i A). P (C 1 )P C1 (A) + P (C 2 )P C2 (A) + + P (C n )P Cn (A) = P (C 1 A) + P (C 2 A) + + P (C n A) = P (A) 2 (C i A) (C j A) = (i j) C 1 C 2 C n = U (1) 2.2 (NG ) 60% (Spam) 40% (Ham) 80% NG 5% NG * 7 : NG A, S 60% P (S) = 0.6, P (S) = 0.4, 80% NG P S (A) = 0.8, 5% P S (A) = 0.05. P A (S) P A (S) = P (S)P S (A) P (S)P S (A) + P (S)P S (A) = 0.6 0.8 0.6 0.8 + 0.4 0.05 = 48 50 = 0.96. P (S), P A (S) 2.3 A A? 9% A 40 0.3% * 8 *7 ( p = 0.8) NG *8 NHK 2011 7 6 [9] 1,000 3 997 997 0.09 90 93 3 3 93 0.032 3% 4

A 9% 91% : A, E A 40 0.3% P (A) = 0.003. 9% P A (E) = 0.09. P A (E) = 1. P E (A) P E (A) = P (A)P A (E) P (A)P A (E) + P (A)P A (E) = 0.003 1 0.003 1 + (1 0.003) 0.09 = 3 92.73 0.032. 3% * 9 2.1 1%, 2% 1% 1 0.01% * 10 2.2 2 A,B A 3%, B 4% A B 4 : 5 1 A 2.3 M 1, M 2, M 3 60%, 30%, 10% 2%, 3%, 6% 1 M 3 2.4 (3 ) 3 A, B, C 1 2 A B C 1 2 1 1 A B A C 1/3 1/2 A : A, B, C A, B, C A, B, C P (A) = P (B) = P (C) = 1 3 F B *9 0.3% 3.2% ([9] 40 50 ) *10 ( ) ( ) (cf. [2]) 5

A B, C P A (F ) = 1 2. B B P B (F ) = 0. C B P C (F ) = 1. P F (A) 1 P (A)P A (F ) P F (A) = P (A)P A (F ) + P (B)P B (F ) + P (C)P C (F ) = 3 1 2 1 3 1 2 + 1 3 0 + 1 3 1 = 1 3 2.5 (3, ) 3 2 1. 3 1 2. 1 1 1 2 : A, B, C A B A, B, C A, B, C B S 3 P S (A) = 1/3, P S (C) = 2/3 * 11 2.4 2.5 A, B, C, D, E 5 A (1), (2) C ( ) ( ) (1) B (2) B E 3 ([3] ) 2.6 ( 3 ) 3 A, B, C 2 1 A, B, C 1/4, 1/4, 1/2 A B C 1 2 1 1 A B A : 2.4 P (A) = P (B) = 1 4, P (C) = 1 2 F B P A (F ) = 1 2, P B(F ) = 0, P C (F ) = 1. *11 [3] 1/2 6

P F (A) 1 P (A)P A (F ) P F (A) = P (A)P A (F ) + P (B)P B (F ) + P (C)P C (F ) = 4 1 2 1 4 1 2 + 1 4 0 + 1 2 1 = 1 5 2.4 A 1/3 A C 1 : 2 1 1/3 1/4 1/5 2.5 2.6 3 A, B, C 1/4, 1/2, 1/4 B A A, B, C 1/2, 1/4, 1/4 2.6 2.4 A, B, C, D, E 5 A, B, C, D, E 1/6, 1/6, 1/6, 1/4, 1/4 A (1), (2) A (1) B (2) B E 3 * 12 3.1 1 x n x 1, x 2,, x n a. x = x 1 + x 2 + + x n n ( ) x (1) x (2) x (n) = x ( n+1 3.1 (1) 42, 38, 40, 44, 52 (2) 42, 38, 40, 44, 52, 198 1 2 2 ) n ( ) x ( n 2 ) + x ( n 2 +1) n *12 I B ( ) [8] [6] 1903 H.G. IT 7

42 + 38 + 40 + 44 + 52 : (1) : x = = 43.2 5 : 38 < 40 < 42 < 44 < 52 42. 42 + 38 + 40 + 44 + 52 + 198 (2) : x = = 69 6 : 38 < 40 < 42 < 44 < 52 < 198 1 (42 + 44) = 43. 2 3.1 (1) (2) (1) (2) ( ) * 13 * 14 22 * 15 549.6 438 ( ) 200 300 22 * 16 *13 1.5 *14 *15 http://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa10/2-2.html ( ) *16 http://www.shiruporuto.jp/finance/chosa/yoron2010fut/index.html ( ) 8

( ) 1-99 100-199 200-299 300-399 400-499 500-699 (%) 22.3 (24.2) 5.5 (6.0) 5.7 (6.2) 4.4 (4.8) 4.3 (4.7) 3.6 (3.9) 7.3 (7.9) 700-999 1000-1499 1500-1999 2000-2999 3000 7.1 (7.7) 9.7 (10.5) 5.1 (5.5) 7.0 (7.6) 10.1 (11.0) 7.8 99.9 (100.0) 1169 500 3 ( ) (cf. [8]) b. x n x 1, x 2,, x n x (1) x (2) x (n) x (n) x (1) ( ) ( 3.2 ) n = 2m x (1), x (2),, x (m), x (m+1), x (m+2),, x (2m) n = 2m + 1 x (1), x (2),, x (m), x (m+2), x (m+3),, x (2m+1) n = 2m + 1 m 1 Q 1 3 Q 3 2 Q 2 ( ) Q 3 Q 1, 1 2 (Q 3 Q 1 ) 3.2 1 Q 1 3 Q 3 (1) 65, 70, 47, 78, 92, 65, 89, 95, 59, (2) 65, 70, 47, 78, 92, 67, 89, 95, 59, 73 : (1) 47, 59, 65, 65, 70, 78, 89, 92, 95 59 + 65 89 + 92 47, 59, 65, 65. Q 1 = = 62. 78, 89, 92, 95 Q 3 = = 90.5. 2 2 (2) 47, 59, 65, 65, 70, 73, 78, 89, 92, 95 Q 1 = 65, Q 3 = 89. 3.3 30 65 70 54 78 89 65 28 93 100 58 88 26 64 66 65 87 50 54 37 91 73 62 32 39 56 80 65 78 75 70 25 35 45 55 65 75 85 95 2 3 1 4 9 5 3 3 30 21 30 25 35, 45,, 3 Q 3 : : 30 15 Q 3 8 75 2 78, 73, 80, 78, 75 73, 75, 78, 78, 80 Q 3 = 78. 9

3.1 3.3 1 Q 1 m 3.2 Q 1 Q 3 Excel n (1, x (1) ), (2, x (2) ),..., (n, x (n) ) x (t), t y = f(t) f(t) = Q q = ( t t)x ( t ) + (t t )x ( t ), f(1 + q 4 (n 1)), q = 1, 3, t t t t 3.2 Q 3 (1) x (7) = 89, (2) 0.25x (7) + 0.75x (8) = 86.25 1 3 * 17 : 1. 1 Q 1 3 Q 3 2. Q 2 3. + 4. 1.5 (, ) 5. 1.5 6. 3.3 65.6, 26, + 100 26 54 65.5 78 100, s 2 = 1 n { (x1 x) 2 + (x 2 x) 2 + + (x n x) 2} s = 1 n {(x 1 x) 2 + (x 2 x) 2 + + (x n x) 2 } x 2 0 3.1 s 2 = x 2 x 2. x 2 x 2 x 1 2, x 2 2,, x n 2 : s 2 = 1 n (x 2 k 2xx k + x 2 ) = 1 n n n x 2 k 2x 1 n = x 2 2x x + 1 n nx = x2 x 2 n x k + 1 n n x 2 3.3 ( ) *17 : I 4 5 6 ( ) 10

: x, s x 1 50 + 10 x 1 x s a z = (a 50)/10 % ( B ) 3.2 x x 1, x 2,, x m y y 1, y 2,, y n m + n z x, y, z x, y, z s 2 x, s 2 y, s 2 z (1) z = m m + n x + n m + n y (2) s z 2 = m m + n s x 2 + n m + n s y 2 mn + (x y)2 (m + n) 2 ( ) 3.2 x n x 1 x 2 x r f 1 f 2 f r n k x k f k x s 2 x = 1 n x k f k, s 2 = 1 n (x k x) 2 f k 3.3 x n 3.2 s 2 = x 2 x 2 3.4 a b x n 3.2 y y k = ax k + b, k = 1, 2,, r, x x, y x, y s 2 x, s 2 y (1) y = ax + b (2) s 2 y = a 2 2 s x 3.4 3.3 : x k y k = x k 5 10 x = 10y + 5, s x 2 = 10 2 s y 2 y = 1 (2 2 + 3 3 + 4 1 + 5 4 + 6 9 + 7 5 + 8 3 + 9 3) = 5.9 x = 59. 30 y 2 = 1 30 (22 2 + 3 2 3 + 4 2 1 + 5 2 4 + 6 2 9 + 7 2 5 + 8 2 3 + 9 2 3) = 38.5 s y 2 = y 2 y 2 = 3.69. s x 2 = 369. 3.5 50 65 70 54 78 89 65 89 95 59 73 28 93 100 68 88 26 95 73 66 56 64 66 65 87 50 54 69 71 89 61 37 91 73 62 32 39 46 89 45 51 56 80 65 78 75 70 95 61 45 85 11

25 35 45 55 65 75 85 95 2 3 4 6 14 8 7 6 50 21 30 25 35, 45,, 55 51 60 (1) x s 2 x (2) 1 Q 1 : (3) m 3.2 2 40 2 2 x, y n x, y (x 1, y 1 ), (x 2, y 2 ),, (x n, y n ) x, y, x 1, x 2,, x n y 1, y 2,, y n x, y s x, s y x y s xy s xy = 1 n {(x 1 x)(y 1 y) + (x 2 x)(y 2 y) + + (x n x)(y n y)} x y r r = s xy s x s y s x > 0 s y > 0 3.3 (1) r 1 r 1 (2) r = 1 n (3) r = 1 n : : (a 1 b 1 +a 2 b 2 + +a n b n ) 2 (a 2 1 +a 2 2 + +a 2 n )(b 2 1 +b 2 2 + +b 2 n ) a k = x k x, b k = y k y (1) c k b k = ca k * 18 c > 0 r = 1 y k y = c(x k x) c < 0 r = 1 y k y = c(x k x) (2), (3) 3.6 s xy = xy x y xy xy x 1 y 1, x 2 y 2,, x n y n, x y 2 x, y 2 x, y n *18 (a k t + b k ) 2 t 12

(cf. [8], p.60) (i) = 0.7 1.0 ( = 0.7 1.0): ( ) (ii) = 0.4 0.7 ( = 0.4 0.7): ( ) (iii) = 0.2 0.4 ( = 0.2 0.4): ( ) (iv) = 0.2 0.2: xy > 0 x y (x, y ) xy < 0 x y ( ) n (cf. : ) 3.4 (1) x, y ( ) 1959 3 1. 2. 2 3. 1964 (cf. [1], p.102) (2) ( ) x y x y ( ) (cf. [8]) y y i 2 x y y = a + bx (a, b ) ax i + b x i ax i + b y i O x i y = ax + b x 13

Q(a, b) = n {y i (ax i + b)} 2 a, b i=1 1 n Q(a, b) = 1 n n (yi 2 + a 2 x 2 i + b 2 2ax i y i 2by i + 2abx i ) i=1 = y 2 + a 2 x 2 + b 2 2axy 2by + 2abx = {b (y ax)} 2 + (x 2 x 2 )a 2 2(xy x y)a + y 2 y 2 = {b (y ax)} 2 + s 2 xa 2 2s xy a + s 2 y = {b (y ax)} 2 + s 2 x ( a s xy s 2 x ) 2 s 2 xy + s 2 y a = s xy, b = y ax = y s xy x y y = s xy (x x) s 2 x ( y x ) s 2 x 1885 1000 ( ) s 2 x s 2 x = 74.7 + 0.57 (cm) 0.57 1 ([6] ) [1] :?,, 2009. [2] :,, 2006. [3] : 3,,, 1998. [4] :,, 1999. [5] : 2,, 1966. [6] :,, 2013. [7] (, ):,, 2010. [8],,, C.R. :,, 2007. [9] :,, 2011. [10] :,, 1999. 1.1 ( 5 ) 4. ( 5 ) 4 (1) 4 6 1 0.5177 6 6 14

( 35 ) 24. ( 35 ) 24 (2) 6 24 1 0.4914 36 36 ( 35 ) 25 ( 35 ) 24 ( 35 ) 25 0.4945 1 < 0.5 < 1 36 36 36 25 0.5 1.2 (a), (b) (a) 7 8 9 (WWWWLL) W A L W A 7 8 9 (WWWWLL) L L W A L L L B (b) 6 7 8 9 (WWWLL) W W A W L W A W L L W A W L L L B L W W A 6 7 8 9 (WWWLL) L W L W A L W L L B L L W W A L L W L B L L L B (1) (a) 1 ( 1 ) 2 ( 1 ) 3 2 + 7 ( 1 2 ( 1 3 ( 1 ) 3 + = 2 2 8 2). (b) 11 + 2 + 3 = 2) 2 16. (2) (a) 4 6 + 2 6 4 ( 2 ) 2 6 + 4 6 6 = 26 ( 3 2 ( 3 ) 2 27 5). (b) 2 ( 3 ) 2 ( 2 ) 2 + 2 5 5 + 3 513 = 5 5 625. 2.1 A, E P A (E) = 0.01, P A (E) = 0.02, P (A) = 0.01 P E (A) P E (A) = P (A)P A (E) P (A)P A (E) + P (A)P A (E) = 0.01 (1 0.01) 0.01 (1 0.01) + 0.99 0.02 = 1 3 P (A) = 0.0001 P E (A) = 1 203. 2.2 A, B A, B F P A (F ) = 0.03, P B (F ) = 0.04, P (A) = 4 9, P (B) = 5 9 P F (A) P F (A) = P (A F ) P (F ) = P (A)P A (F ) P (A)P A (F ) + P (B)P B (F ) = 4 3 4 3 + 5 4 = 3 8 2.3 A 1, A 2, A 3 M 1, M 2, M 3 F P (A 1 ) = 0.6, P (A 2 ) = 0.3, P (A 3 ) = 0.1, P A1 (F ) = 0.02, P A2 (F ) = 0.03, P A3 (F ) = 0.06 P F (A 3 ) P F (A 3 ) = P (A 3 )P A3 (F ) P (A 1 )P A1 (F ) + P (A 2 )P A2 (F ) + P (A 3 )P A3 (F ) = 1 6 6 2 + 3 3 + 1 6 = 2 9 2.4 A, B, C, D, E A, B, C, D, E P (A) = P (B) = P (C) = P (D) = P (E) = 1 5. (1) B S 1 2.5 P A (S 1 ) = 1 4, P B(S 1 ) = 0, P C (S 1 ) = P D (S 1 ) = P E (S 1 ) = 1 3. P S1 (C) = P (C)P C (S 1 ) P (A)P A (S 1 ) + P (B)P B (S 1 ) + P (C)P C (S 1 ) + P (D)P D (S 1 ) + P (E)P E (S 1 ) = 4 15 15

(2) B, E S 2 (1) P A (S 2 ) = 1 4C 2 = 1 6, P B (S 2 ) = P E (S 2 ) = 0, P C (S 2 ) = P D (S 2 ) = 1 3C 2 = 1 3. P S 2 (C) = 2 5. 2.5 2.6 P A (F ) = 1 2, P B(F ) = 0, P C (F ) = 1. A, B, C 1/4, 1/2, 1/4 P (A) = P (C) = 1 4, P (B) = 1 2 P F (A) = 1 3. 1/2, 1/4, 1/4 P F (A) = 1 2 2.6 2.4 P (A) = P (B) = P (C) = 1 6, P (D) = P (E) = 1 4. 2.4 (1) P S1 (A) = 3 19, (2) P S 2 (A) = 1 6 3.1 Q 1 8 55 2 54, 54, 56, 58 Q 1 = 54. m 15 16 65 5 6 65 + 66 62, 64, 65, 65, 65, 66, 67, 70, 70 m = = 65.5. 2 3.2 (1) (m + n)z = mx + ny (2) (m + n)s 2 z = (m + n)z 2 (m + n)z 2 = mx 2 + ny 2 1 (mx + ny)2 m + n ) ) = m(x 2 x 2 ) + n(y 2 y 2 ) + (m m2 x 2 + (n n2 y 2 2mn m + n m + n m + n x y = ms 2 x + ns 2 y + mn m + n (x y)2 3.3 s 2 = 1 n (x 2 k 2xx k + x 2 )f k = 1 n = x 2 2x x + x 2 = x 2 x 2. 3.4 (1) y = 1 y k f k = 1 (ax k + b)f k = a 1 n n n (2) s y 2 = 1 n (y k y) 2 f k = 1 n x k 2 f k 2x 1 n x k f k + x 2 1 n x k f k + b 1 n {ax k + b (ax + b)} 2 f k = 1 n 3.5 (1) x k y k = x k 5 10 f k f k = ax + b. a 2 (x k x) 2 f k = a 2 s 2 x. x = 10y + 5, s x 2 = 10 2 s y 2 y = 1 (2 2 + 3 3 + 4 4 + 5 6 + 6 14 + 7 8 + 8 7 + 9 6) = 6.18 x = 66.8. 50 y 2 = 1 50 (22 2 + 3 2 3 + + 9 2 6) = 41.58 s y 2 = y 2 y 2 = 3.3876. s x 2 = 338.76. (2) 50 25 Q 1 13 55 4 55 51, 54, 54, 56, 56, 59 Q 1 = 56. (3) 25 26 65 4 5 55 65, 70, 65, 68, 66 + 68 66, 64, 66, 65, 69, 61, 62, 65, 70, 61 m = = 67. 2 3.6 s xy = 1 n (x k y k xy k yx k + x y) = 1 n x k y k x 1 n y k y 1 n x k + 1 n x y n n n n n = xy x y y x + x y = xy x y. 16