10:30 12:00 P.G. vs vs vs 2

Similar documents
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

tokei01.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Part () () Γ Part ,

renshumondai-kaito.dvi

solutionJIS.dvi


1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

meiji_resume_1.PDF

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

³ÎΨÏÀ


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

Z: Q: R: C: 3. Green Cauchy

Microsoft Word - 表紙.docx

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í


k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

7

2011de.dvi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

II 2 II

Dynkin Serre Weyl

Note.tex 2008/09/19( )

30

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

II III II 1 III ( ) [2] [3] [1] 1 1:

熊本県数学問題正解

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

統計学のポイント整理

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

入試の軌跡

自由集会時系列part2web.key

( ) Loewner SLE 13 February

2 1 Introduction

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

all.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Gmech08.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

all.dvi

1 c Koichi Suga, ISBN

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K


Transcription:

1

10:30 12:00 P.G. vs vs vs 2

LOGIT PROBIT TOBIT mean median mode CV 3

4

5

0.5 1000 6

45 7

P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B A)P(A) P(A B) ------------------------------------- P(B A)P(A) P(B A c )P(A c ) 8

9

10

P( ) P( ) 1- X P( X=x ) C x p x q n-x B(n,p) 11

X n x λ p(x) C x λs n x λs n n-x p(x) λ x exp λ x! X 0,1, 12

x a<x<b a b 1/ ba E(x)= 1/ b-a ab xdx =(a+b)/2 V(x)=(b-a) 2 /12 13

normal distribution N µ 0 1 N 0, 1 µ 14

N 0 1 µ=0 σ 2 =1 - s + s µ 68.2% 95.4% 15

µ=0 σ 2 =0.5 N (0, 1) N (0, 2) N (0, 0.5) σ 2 =1 σ 2 =2 16

µ = -2 µ = 0 µ = 2 N (-2, 1) N (0, 1) N (2, 1) σ 2 =1 17

µ µ X,Y 18

19

X µ σ 2 X n {X 1 X 2 X n } µ /n 20

2 i 1, 2,., m i µ 21

3 Z 22

4 X n {X1 X2,, Xn} X µ c 23

5 X n {X1 X2,, Xn} c 24

6 n {X1 X2,, Xn} i 1, 2, n µ n 25

7 n {X1 X2,, Xn} n 1 2 26

χ 2 t χ 2 χ 2 27

2 Z1 Zk k k 28

χ 2 W W Z1 Z1 1 W k W Z Z 2 k 2 E(z 4 =3 V W 2k 2 Xi µ k 29

χ 2 3 2 2 5 1 10 2 2 4 6 8 10 12 16 30

t Z W k Z W k t k t t t 1 2 3 31

t 0 k/(k 2) 1 1 t 32

Z P c P Z c 33

F V m W k V W V W m k F F F F k/(k 2) k 3 k 1 34

F 0.8 2.20 0.6 5.20 0.4 0.2 1 2 3 4 5 35

estimator vs estimate vs vs 36

µ 12 76, 63, 83, 86, 53, 71 95% Z= -1.96 0 1.96 = 64.2 81.8 µ σ 2 /n= 144/6 24 Z 95% P( 1.96 Z 1.96 ) 0.95 72 µ 64.2 µ 81.8 37

(unbiasness) consistency efficiency sufficiency 38

moment method (maximum likelyhood method) 39

(alternative) hypothesis (null hypothesis) p p 0 test statistics) 10% 25 25 40

critical value) α β 41

1%,5%,10% 42

25 P: P 0 : H 0 : P P 0 Ha: P P 0 H 0 : P P 0 H 0 : P P 0 43

3.1kg 0.2kg 25 3.0 3.1kg 3.1kg 0.2/5 0.04 44

α 0.05 β=0.198 H a :µ=3.1 H 0 :µ=3.1 α β Z=-2.5( =3) Z=0 ( =3.1) Z=-1.65( =3.034) 45

46

1986 17 171.5cm 158.5cm 450 1949 17 161.2cm 152.2cm µ 1986 5.75cm 5.07cm 37 µ 161.2 µ 152.2 µ 161.2 µ 152.2 47

C 48

n-1 49

1200 100 µ=1200 µ 1200 1230 120 n 100 1% z 0 =2.33 X 1200+(120/10)2.33=1228 1% P 0.01 α 0 ξ 100α µ 100α ξ α µ 100(1- α)% µ 0 µ 0 50

51

1) 2) n 1 +n 2-2 t 3) σ 12 σ 22 12 S 22 52

3) 6.3 6.4 53

100 α/2 Z0 25 100 α/2 Z 0 b=1.65, p=1/6-1.65{1/6(1-1/6)/25} 0.5 =0.044, 25 1.1 0 1 54

55

2 X,Y ρ n-2 T r=-0.655 T 3.0 n=12 5% -1.782 4 56

f(x,θ) L 0 L a La 0 λ 6.1 X X 1 X n θ θ 1 θ k H 0 θ 1 =c 1 θ c n -2log(λ) χ 2 χ2 57

χ χ E = n x x TSS = 58

59

60

61

62

63

64

65

correlation coefficient 2 66

20 ( ) = α + β ( ) + 67

( ) (kg) 68

69

y y j y k µ k µ j x 70

y y j µ j y k µ k U i (0,σ 2 ) (i=j,k) x 71

72

73

74

75

76

(1),(2) a b n 77

78

79

80

81

82

83

0 84 2.5

0 2.5 85

86

1.440 20 87

88

---- ---- DW DW 2(1 r) DW 2.190422 89

DW dl du dw<dl du<dw<4-du 4-dL<dw DL<dw<dU 4-dU<dw<4-dL 90

DW 10 h<-645-1.65<h<1.645 1.645<h 1-nv 0 e j e j-1 e j-1 91

1% 1.441 95% 0.927 1.955 0.65 DW 2.19 92

93

94

95

1.037 95 0.819 1.256 96

1% P DW 97

98

99

100

FI* FI* FI* β 1 β 2 X i ei FI FI* FI

FI* FI FI Pi Pr FI= Pr FI* Pr ε i β 1 β 2 X i Pr ε i β 1 β 2 X i (1) ε i (1) P i Pr ε i β 1 β 2 X i Φ β 1 β 2 X i

β 1 β 2 Δ β 1 β 2 X i

2 Censored odel Truncated model FI* FI i * β 1 β 2 X i i FI FI*

FI* FI* 0

FDIB z- - -1.195-1.74 0.08 SB 0.022 17.2 0.00 ET 1.319 3.47 0.00 APCC -2.438-2.25 0.02 NAFTA 0.733 1.067 0.28 EU -2.142-0.838 0.40 _89 1980 0.077 0.195 0.84 22.3 AIC=-0.872 33 NAFTA EU 1980

FDIB z- - C -30.837-2.78 0.00 SB 0.030 0.15 0.87 ET 8.608 1.55 0.11 APCC -18.149-1.90 0.05-122.9 AIC=1.96 130

FDIB z- - C -0.052-0.31 0.75 SB -0.008-0.17 0.86 ET 1.159 4.99 0.00 APCC -0.231-1.55 0.11 _89 ) 0.232 1.39 0.16 35.6 AIC=-2.12 28 1980

4 FDIB z- - C 0.338 2.21 0.02 SB 0.038 1.23 0.21 ET -0.388-0.64 0.52 APCC -0.259-1.38 0.16 _89(80 ) 0.298 1.22 0.21 8.85 AIC=-0.38 15 1980

RDSA FDI [FDI] [RDSA]=17.44 [RDSA] LSALE FDI [FDI] ( ) [LSALE]=6.214 [LSALE]

33 4 p149 183 1979 10

< > < >

Rxy(τ τ

Dxy(θj Px (θj X Y X(t) Y(t) πθj τ θj X(t) Y(t) τ θj X(t) Y(t)

MBP kg 1962 1 1976 12 180 AOP kg 1962 1 1976 12 180 STN 1962 1 1976 12 180

χα22(v) α% α α χ2 P(θj V V

ii iii

50ha X 1 ha X 2 ha ha 1ha 100 ha 50 ha 100 3000 ha 80 ha 100 ha X 1 + X 2 50 X 1 + X 2 100 50X 1 + 100X 2 3000 80X 1 + 100X 2 Z 122

XX2 2 X 2 =0.8X 1 +0.01Z 123

(i) x 1,x 2,x 3,x 4 S y 1,y 2,y 3 y 1 50 y 2 =100 y 3 =3000 (ii) y 1,y 2,y 3 0 (iii)z j -C j S 0 (i) Z j -C j (ii)s R 2 (iii) (iv) (iii) 2 (v) Z j -C j Zj Cj Z j C j 2 Z j -C j 3 Z j -C j R Z j -C j S y2=20 20 =40 40 x2=10 10ha Z 124 j - C j =4200 4200

y2 125

X1 + X2 10 11 20 X1 + 40 X2 360 45 X1 + 22.5 X2 360 Z X1 + X2 126

127

128