d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

Similar documents
p12.dvi

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

DVIOUT

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

A

error_g1.eps

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

A


1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14


untitled

dy = sin cos y cos () y () 1 y = sin 1 + c 1 e sin (3) y() () y() y( 0 ) = y 0 y 1 1. (1) d (1) y = f(, y) (4) i y y i+1 y i+1 = y( i + ) = y i

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

Part () () Γ Part ,

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

( ) Loewner SLE 13 February

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x


( ) ( )

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

統計的データ解析

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

: 1g99p038-8

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

i

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d


68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y


II 1 II 2012 II Gauss-Bonnet II

Morse ( ) 2014

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

. p.1/14

v er.1/ c /(21)

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

x h = (b a)/n [x i, x i+1 ] = [a+i h, a+ (i + 1) h] A(x i ) A(x i ) = h 2 {f(x i) + f(x i+1 ) = h {f(a + i h) + f(a + (i + 1) h), (2) 2 a b n A(x i )

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

untitled

R R 16 ( 3 )

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

renshumondai-kaito.dvi

数値計算:常微分方程式

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

) Binary Cubic Forms / 25

6.1 (P (P (P (P (P (P (, P (, P.101

K E N Z OU

II 2 II

Untitled

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

6.1 (P (P (P (P (P (P (, P (, P.

日本内科学会雑誌第102巻第4号

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

DE-resume

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s


6. Euler x

2011de.dvi

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

応力とひずみ.ppt

x ( ) x dx = ax

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

mugensho.dvi

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

lecture

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

Chap9.dvi

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

untitled

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

Transcription:

3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+ 3.3 d dt d dt d dt [A] = k[a] [B] = k[a] k[b] [C] = k[b] 4

d dt A B C = 0 0 0 0 0 A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 0 0 0 0 0 0 0 P x P x = = C C exp( t) C 3 exp( t) 0 0 0 A B C A + B + C = C A + B = C exp( t) A = C 3 exp( t) 5

A 0 B 0 C 0 = C 3 = C = C = mm 0 mm 0 mm A + B + C = A + B = exp( t) A = exp( t) A B C = exp( t) exp( t) exp( t) exp( t) + exp( t) mm 3.4 3.4. : Euler Euler Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Euler y(x 0 + h) = y(x 0 ) + h y (x 0 ) Euler Taylor t S S(t) t t + t S S(t + t) Euler S(t + t) = S(t) + ts (t) S (t) S ds dt 6

S(t + t) = S(t) + t ds dt ds dt ds = k S dt S(t + t) = S(t) t k S S(t) = S(t + t) S(t) = t k S Euler t S t k S 3.4.. d[glucose] = k[glucose] dt t =.0sec t = 0 5.0 sec k = 0.sec t = 0 sec [Glucose]=.0mM. () t = 5.0 sec ε = n X analytical i Xi numerical n X analytical i i= 3. t.0 sec 4. 7

3.4.3 : Euler 3.4.4 3.5 α 0 y n + α y n + + α k y n k = h(β 0 f n + β f n + + β m f n m ) y n t n y y n k = y(t n kh) f = y 3.5. Euler RK 3.5. : Adams-Bashforth Gear Adams y n = α y n + h(β f n + β f n ) α, β Taylor y(t n ) = α y(t n ) + h(β f(t n, y(t n )) + β f(t n, y(t n ))) t n = t h Taylor y(t n ) α { y(t n ) h d dt y(t n) + h + hβ { f(t n ) h d dt f(t n) + h + hβ { f(t n ) h d dt f(t n) + 4h } d dt y(t n) d dt f(t n) } d dt f(t n) } 8

h h 0 : y(t n ) = α y(t n ) h : 0 = α hy (t n ) + hβ y (t n ) + hβ y (t n ) h : 0 = h α y (t n ) h β y (t n ) h β y (t n ) α, β = α 0 = α + β + β 0 = α β β Adams-Bashforth α =, β = 3, β = Adams-Bashforth ds dt S = t ( 3 y n = y n + h f n + ) f n = k S ( 3 k S t=t t ) k S t=t t 3.5.3 : Adams-Moulton 3.5.4 (predictor-corrector) Adams-Bashforth Adams-Moulton MATLAB ode3 ( ) ( ) Backward Differential Formula(ode5s) 9

3.6 3.6. Runge-Kutta 3.7 Runge-Kutta Runge-Kutta 3.7. LM LM RK Adams 3.7. s Runge-Kutta k = f(x 0, y 0 ) k = f(x 0 + c h, y 0 + ha k ) k 3 = f(x 0 + c 3 h, y 0 + h(a 3 k + a 3 k )). k s = f(x 0 + c s h, y 0 + h(a s k + a s,s k s )) y = y 0 + h(b k + + b s k s ) 0

c = a c 3 = a 3 + a 3. c s = a s + + a s,s s Runge-Kutta 3.7.3 Butcher s Runge-Kutta Butcher k 0 k c a k 3 c 3 a 3 a 3...... k s c s a s a s a s,s y b b b s b s 3.7.4 Runge-Kutta (RK) Runge-Kutta k = f(x 0, y 0 ) k = f(x 0 + h, y 0 + hk ) y = y 0 + hk 3.7.5 Runge-Kutta y(x 0 + h) y Kh p+ Runge-Kutta p Runge-Kutta Taylor p

3.7.6 Taylor Euler y = y 0 + hf ( x 0 + h, y 0 + h ) f 0 Taylor f ( ( ) x 0 + h, y 0 + hf 0) = h f(x0, y 0 ) + + hf x 0 f(x y 0, y 0 ) ( + h + hf! x 0 y) f(x0, y 0 ) + = f(x 0, y 0 ) + h (f x + ff y ) (x 0, y 0 ) + ( h 4 + h f x 0 x + h f y 4 0 y ) f(x 0, y 0 ) + = f(x 0, y 0 ) + h (f x + ff y ) (x 0, y 0 ) + h (f 8 xx + ff xy + f f yy ) (x 0, y 0 ) + y = y 0 + hf(x 0, y 0 ) + h (f x + f y f) (x 0, y 0 ) + h3 (f 8 xx + f xy f + f yy f ) (x 0, y 0 ) + Taylor y(x 0 + h) = y 0 + hy (x 0, y 0 ) + h y (x 0, y 0 ) + h3 6 y (x 0, y 0 ) + = y 0 + hf(x 0, y 0 ) + h x + f y f)(x 0, y 0 ) + h3 6 (f xx + f xy f + f yy f + f x f y + f y f)(x 0, y 0 ) + y(x 0 + h) y = h3 4 {(f xx + f xy f + f yy f + 4(f x f y + f y f)}(x 0, y 0 ) + y(x 0 + h) y Kh 3 Runge-Kutta

3.7.7 dy dx = f(x, y) df = f x df dx = f x + f y = y y = f x + f y f dx + f y dy dy dx dy = y x dy dx dx + y y dy = y x + y y = dy dx x (f x + f y f) + y (f x + f y f) dy dx = {f xx + (f xy f + f y f x )} + {f xy + (f yy f + fy )}f y = f xx + f xy f + f yy f + f x f y + f y f 3.8 3.8. p(ˆp) p ˆp ( : Dormand-Prince 5(4), Bogacki-Shampine 3() ode45, ode3 ) Dormand-Prince Runge-Kutta(5,4) 3.8. RK3() RK3 3 3 3

k = f(x n, y n ) () k = f(x n + c h, y n + ha k ) () k 3 = f(x n + c h, y n + h(a 3 k + a 3 k )) (3) y n+ = y n + h(b k + b k + b 3 k 3 ) (4) k 3 h 3 k (4) h h ( ) k = f(x n, y n ) + h c! x k f y ( + h c! x k y) f + O(h 3 ) = f(x n, y n ) + h(c f x + a ff y ) + h (c f xx + c a ff xy + a f f yy ) + O(h 3 ) k 3 k 3 = f(x n, y n ) + h! + h! ( c 3 ) f + (a x 3k + a 3 k ) y ( c 3 + (a x 3k + a 3 k ) y) f + O(h 3 ) = f(x n, y n ) + h(c 3 f x + a 3 ff y + a 3 k f y ) + h {c 3f xx + c 3 (a 3 f + a 3 k )f xy + (a 3 f + a 3 k ) f yy + O(h 3 ) k f a 3 k a 3 k = a 3 { f + h(c f x + a ff y ) + O(h ) } a 3 k = a 3 (f + O(h)) h k 3 k 3 = f(x n, y n ) + h[c 3 f x + a 3 ff y + a 3 {f + h(c f x + a ff y ) + O(h )} f y ] + h [c 3f xx + c 3 {a 3 f + a 3 (f + O(h))}f xy + {a 3 f + a 3 (f + O(h))} f yy ] RK h RK 4

y(x + h) = y(x) + h dy dx + h d y! dx + h3 d 3 y 3! dx + 3 O(h4 ) y(x + h) y(x) = hf + h (f x + f y f) + h3 6 (f xx + f xy f + f yy f + f y f x + fy f) + O(h 4 ) d y dx = f x + f y f df dx = f x + f df y dx RK h RK : hf = h(b + b + b 3 )f : 3 : h (f x + f y f) = b h (c f x + a ff y ) + b 3 h (c 3 f x + a 3 ff y + a 3 ff y ) h 3 6 (f xx + f xy f + f yy f + f y f x + fy f) = b h 3 (c f xx + c a ff xy + a f f yy ) + b 3 h 3 a 3 (c f x + a ff y )f y + b 3h 3 {c 3f xx h +c 3 a 3 ff xy + c 3 a 3 ff xy +(a 3 + a 3 ) f f yy } b + b + b 3 = h h f x : f x = b h c f x + b 3 h c 3 f x = b c + b 3 c 3 h ff y : f yf = b h a ff y + b 3 h (a 3 + a 3 )ff y = b a + b 3 (a 3 + a 3 ) h 3 5

h 3 f xx : 6 f xx = b h 3 c f xx + b 3h 3 c 3f xx = 6 b c + b 3c 3 h 3 ff xy : 6 (f xyf) = b h 3 (c a ff xy ) + b 3h 3 (c 3 a 3 ff xy + c 3 a 3 ff xy ) = b c a + b 3 c 3 (a 3 + a 3 ) 3 f yy f h 3 : 6 f yyf = b h 3 a f f yy + b 3h 3 (a 3 + a 3 ) f f yy = 6 b a + b 3(a 3 + a 3 ) h 3 f y f x : 6 f yf x = b 3 h 3 a 3 c f x f y = b 3 a 3 c 6 fy h 3 f : 6 f y f = b 3 h 3 a 3 a ffy = b 3 a 3 a 6 c = a c 3 = a 3 + a 3 b + b + b 3 = b c + b 3 c 3 = b c + b 3 c 3 = 3 b 3 a 3 c = 6 8 (a, a 3, a 3, b, b, b 3, c, c 3 ) 6 c = u, c 3 = v { b u + b 3 v = b u + b 3 v = 3 { b u + b 3 uv = u b u + b 3 v = 3 6

(uv v )b 3 = u 3 b 3 = = u 3 uv v 3u 6v(u v) { b uv + b 3 v = v b u + b 3 v = 3 (uv u )b = v 3 3v b = 6u(v u) b 3 a 3 c = 6 3u 6v(u v) a 3u = 6 a 3 = v(u v) u(3u ) b = b b 3 a = c = u a 3 = c 3 a 3 = v a 3 (RK) Runge-Kutta b, b, b 3, ŷ n+ = y n + h(ˆb k + + ˆb s k s ) Runge- Kutta 7

ε tol h ( ) RK3() ˆb 3 = 0 y i ŷ i ε tol b u + b 3 v = ˆb 3 = 0 ˆb = ˆb ˆb u = ˆb = = u c ˆb = c (RK) 0 0 c =, a =, ˆb = 0, ˆb = RK3 0 c 3 a 3 a 3 b b b 3 RK3 Ralston (REF.FIXME) 0 3 4 0 3 4 9 3 Ralston a 3 = 0, a 3 = 3, b 4 =, b 9 =, b 3 3 = Ralston RK3 4 9, c 3 = 3 4 (REF.FIXME) 4 9 8

3.8.3 y i ŷ i ε tol err = n n ( yi ŷ i ε i= tol ) err err Ch q+ Ch q+ opt err ( h h opt ) q+ h opt h( q+ err h opt. err h. err h opt h 3.9 3.9. Gear (BDF: Backward Differential Formula) α 0 y n + α y n + + α k y n k = hf n Adams Taylor Gear Numerical initial value problems pp.4 stiffly stable method 9

L.H.S. α 0 y(t n ) + α { y(t n ) h d dt y(t n) + h + α { y(t n ) h d dt y(t n) + 4h R.H.S. = h d dt y(t n) } d dt y(t n) d dt y(t n) } h h 0 : α 0 y(t n ) + α y(t n ) + α y(t n ) = 0 h : α hy (t n ) hα y (t n ) = hy (t n ) h : α h y (t n ) + α h y (t n ) = 0 α 0 + α + α = 0 α α = + α = 0 Gear α 0 = 3, α =, α = Gear ds dt 3 y n y n + y n = hf n = k S 3 S t S t t + S t t = t k S t 3.9. (stiff equation) (stiffness ratio) = > 0 4 (stiff) 30

A BDF A (stiffly stable) 6 BDF 3.0 Further reading Gear, Springer s yellow book http://www.scholarpedia.org/article/backward_differentiation_formulas by Gear 3