. 287 mm. 50 µm 2, 0.01., CeO 2 a Å,.,, N 2.,, SPring-8/BL47XU., Si111 Si kev., 10-5 Pa, VG R4000. GeTe-Sb 2Te 3 GST, NaCl 3),, c H. 4)

Similar documents
X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst


** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite

X線分析の進歩45

Rietveld analysis and its application Abstract A brief review has been presented on the Rietveld method and its recent development. It consists of (1)

放射線化学, 97, 29 (2014)

X線分析の進歩36 別刷

1

渡辺(2309)_渡辺(2309)

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

Research Reports on Information Science and Electrical Engineering of Kyushu University Vol.11, No.1, March 2006 Numerical Analysis of Scattering Atom

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

パナソニック技報

The Plasma Boundary of Magnetic Fusion Devices

Fig.2 Optical-microscope image of the Y face-cross sec- tion of the bulk domain structure of a 0.4-mm-thick MgO-LiNbO3 crystal after chemical etching.

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

HAJIMENI_56803.pdf

03J_sources.key

研究成果報告書


C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

放射線化学, 92, 39 (2011)

SAXS Table 1 DSC POM SAXSSAXS PF BL-10C BL-15A Fig. 2 LC12 DSC SAXS 138 C T iso T iso SAXS q=1.4 nm -1 q=(4π/λ)sin(θ/2), λ:, θ: Fig. 3 LC12 T iso Figu

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

01-表紙.ai

Microsoft Excelを用いた分子軌道の描画の実習

% 1% SEM-EDX - X Si Ca SEM-EDX SIMS ppm % M M T 100 % 100 % Ba 1 % 91 % 9 % 9 % 1 % 87 % 13 % 13 % 1 % 64 % 36 % 36 % 1 % 34 46

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

陽電子科学 第4号 (2015) 3-8

news

Structural Studies of Graphite Intercalation Compounds of Fluorine by Transmission Electron Microscopy Tetsuya Isshiki, Fujio Okino, Yoshiyuki Hattori


untitled

Netsu Sokutei 19 (4) Thermal Transitions and Stability of Fatty Acid-Containing and Defatted Bovine Serum Albumin (BSA) Michiko Kodama, Shinji

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

SPring8菅野印刷.PDF

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

プラズマCVDの化学反応工学

E 1 GeV E 10 GeV 1 2, X X , GeV 10 GeV 1 GeV GeV π

52-2.indb

Surface Morphology for Poly-L-lactide Fibers Subjected to Hydrolysis Suong-Hyu Hyon Institute for Frontier Medical Sciences, Kyoto University 53, Shog

1) Y. Kobuke, K. Hanji, K. Horiguchi, M. Asada, Y. Nakayama, J. Furukawa, J. Am. Chem. Soc., 98, 7414(1976). 2) S. Yoshida, S. Hayano, J. Memb. Sci.,

06_学術.indd

J. Jpn. Inst. Light Met. 65(6): (2015)

1 2 2 (Dielecrics) Maxwell ( ) D H

untitled

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

藤村氏(論文1).indd

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2


報告書 H22-2A-09

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

知能と情報, Vol.30, No.5, pp

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

PowerPoint プレゼンテーション

Modal Phrase MP because but 2 IP Inflection Phrase IP as long as if IP 3 VP Verb Phrase VP while before [ MP MP [ IP IP [ VP VP ]]] [ MP [ IP [ VP ]]]

36 th IChO : - 3 ( ) , G O O D L U C K final 1

JFE.dvi

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe


XFEL/SPring-8

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

untitled

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

研究室ガイダンス(H28)福山研.pdf

Fig. 1 Sampling positions from the ingot. Table 2 Chemical compositions of base metal (%) Fig. 2 (unit: mm) Shape and size of fatigue test specimen. T

研究室ガイダンス(H29)福山研v2.pdf

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra

δδ 1 2 δ δ δ δ μ H 2.1 C 2.5 N 3.0 O 3.5 Cl 3.0 S μ

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

16_.....E...._.I.v2006

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL




THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

1


The 15th Game Programming Workshop 2010 Magic Bitboard Magic Bitboard Bitboard Magic Bitboard Bitboard Magic Bitboard Magic Bitboard Magic Bitbo

浜松医科大学紀要

,,.,,.,..,.,,,.,, Aldous,.,,.,,.,,, NPO,,.,,,,,,.,,,,.,,,,..,,,,.,

<32322D8EA D89CD8D8797B294C E8A968388DF814589C193A1899B E5290EC8F438EA12D966B8A4393B98F5C8F9F926E95FB82CC8BC7926E F5

研究成果報告書(基金分)

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

FA

自然言語処理16_2_45

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

Transcription:

51292-2992009 GeTe-Sb 2 Te 3,, Toshiyuki MATSUNAGA, Noboru YAMADA, Kouichi KIFUNE and Yoshiki KUBOTA: Crystal Structures of Phase-Change Recording Material, GeTe-Sb 2 Te 3 Pseudo-binary Compounds Crystal structures of the phase-change recording material, GeTe-Sb 2 Te 3, pseudo-binary compounds have been investigated over a decade using synchrotron radiation and the large Debye-Scherrer camera installed at SPring-8 s BL02B2 beamline. These compounds can be crystallized into metastable single phase with NaCl-type structure, for instance, by instantaneous laser irradiation; however, they are transformed into stable phases with long period trigonal structures characterized by the chemical formula,gete n Sb 2 Te 3 m n, m; integerafter sufficient heat treatments. These stable phases can be described as structure with cubic closepacking periodicity ABCABC where the stacking rules of the Ge/Sb and Te layers are different from each other. DVD-RAMRewritable DVD Blu-ray disc,., GeTe-Sb 2Te 3, ns,,.,,, 600 700 1 Blu-ray disc.sem image of recording marks on a phase-change optical recording disc., 1..,,, 400 500,.,,,. 1),,,,, ns,,.,, nm,,,., GeTe-Sb 2Te 3.,, 10,,,,,. 2),,,.,,,,, 0.2 0.3 mm X. SPring-8/BL02B2, 29.5 kev 292 51 5 2009

. 287 mm. 50 µm 2, 0.01., CeO 2 a 5.4111 Å,.,, N 2.,, SPring-8/BL47XU., Si111 Si444 7.94 kev., 10-5 Pa, VG R4000. GeTe-Sb 2Te 3 GST, NaCl 3),, c H. 4) NaCl Sb 2Te 3,.,,,. GeTe-Sb 2Te 3,,, GeTe, Sb 2Te 3-67 Ge 1Sb 4Te 7, NaCl.,, GeTe, 100 GeTe,, NaCl, GeTe,, NaCl., Sb 2Te 3,,,. 5),,.,,,, 1 SEM,,.,. 2. HOMOhighest occupied molecular orbital,. GeTe-Sb 2Te 3,, GeTe 51 5 2009 2 Ge 2Sb 2Te 5,.Photoemission spectra of the valence bands obtained for amorphous and crystalline Ge 2Sb 2Te 5 thin films. Sb 2Te 3 2 1 Ge 2Sb 2Te 5,,.,, Ge 2Sb 2Te 5, GeTe-Sb 2Te 3,,,. Ge 2Sb 2Te 5, Fm3 _ m NaCl 6) 4, 7., p Ge4s 2 4p 2, Sb5s 2 5p 3, Te5s 2 5p 4,,,. 3, Te 4a,, Ge, Sb 4b. 4b,,, 20 at.., 1 p 3,, p. 2,, 7),,, 2,,, Te, Sb, Ge s,,, 3 p. 8),,. 293

3 Ge 2Sb 2Te 5. Temperature dependence of the atomic displacement parameters for the metastable Ge 2Sb 2Te 5 phase.,.,, Ge-Te, Sb-Te 9)-12), 4, 7,, Ge-Te, Sb-Te 2,,. 12),,.,, 6, 8-N 13) N,,,,,. 3 2 B., 4a, 4b,,,.,,,,. 14),, B,,, 4b, T 0,,., 4b,,,., X LANSCE NPDF 15) PDFpair distribution function 16),,,. 17) X PDF,. 14) 4, 4a Te,,,, 4b, Ge,, 4 Ge 2Sb 2Te 5 PDF.Structures of the Ge 2Sb 2Te 5 metastable phase obtained by the PDF analysis. Ge Te, Sb Te.Ge Sb,,,., Ge/Sb 20. 5 Ge-Te Sb-Te Gr.Partial pair distribution functions Grfor Ge-Te and Sb-Te in a short r range.., 5,. Ge r., Ge,, 2,, GeTe,. 9),,. Ge-Te, Sb-Te,, 2.63 Å, 2.78 Å 10),,,,,,,,.,, 294 51 5 2009

. 18),.,,,. 2, NaCl, GeTe- Sb 2Te 3,,. Te,, Ge, Sb,, Ge/Sb,,,. GeTe, Ge, 2 Ge 2 Sb, 1,,, Ge 2Sb 2Te 5 NaCl. p,, 1, 3. 6, GeTe 1-xSb 2Te 3 x, 4a Te 100,, 4b g 19),20),. 8) 1g,, x/1 2x,.,, Sb 2Te 3, Sb, Te,.,,., Sb 2Te 3 NaCl,, 33., GeTe, NaCl,, 1 111, 7. 21),,, Fm3 _ m., Ge, Te, 111,., Ge, Te,,,., a, α,, C 3vO h. 22),,., GeTe 500, Sb 2Te 3, x 0.137Ge 8Sb 2Te 11 Ge 6Sb 2Te 9,. 21) 51 5 2009 6 GeTe-Sb 2Te 3 V 1/3 4b g.concentration dependence of the lattice parameterv 1/3 and atomic occupancy for the 4b site of the GeTe-Sb 2Te 3 pseudo-binary metastable phase. 7 NaCl.Crystal structures of low temperature rhombohedral phase having the NaCltype atomic arrangement.6 NaCl. Te, Ge/Sb/., GeTe-Sb 2Te 3,, Ge 2Sb 2Te 5, Ge 1Sb 2Te 4, Ge 1Sb 4Te 7, 3 8. 23), Ge 3Sb 2Te 6, Ge 1Sb 6Te 10, 9. 24),25), Ge, Sb, Te, 3 1., a-b,, N, Shelimova 30), 1,. GeTe C 3v, D 3d,, 22), 295

, 5) GeTe,,. 1,, GeTe Sb 2Te 3.,GeTe nsb 2Te 3 m,, 2n 5m n, m,2n 5m/3 2n 5m 3 0 N 2n 5m P, 0 N 32n 5mR.,,,. GeTe,, 6, Ge/Sb Te c H., Sb, NaCl,, Na Ge 2Sb 2Te 5 10 9. Na 1 GeTe nsb 2Te 3 m.crystal data forgete nsb 2Te 3 m homologous compounds. 8 GeTe-Sb 2Te 3.The existing phase diagram of the GeTe-Sb 2Te 3 pseudo-binary system. nm SG R R P R P R R N aå cå 9 GeTe-Sb 2Te 3.Crystal structures of GeTe-Sb 2Te 3 homologous phasesstable phases.ge, Sb,. Ge/Sb,.,,. 296 51 5 2009

, Te Te, Te. Te Te,. 28), Te-Te, NaCl. Ge 2Sb 2Te 5n 2, m 1, 2n 5m 9, 9 NaCl 9 S9-Te-Sb-Te-Ge- Te-Ge-Te-Sb-Te-.,2n 5m 3 0, 1 NaCl P. Ge/Sb Te, Te,,,,,,. 26), Ge 3Sb 2Te 6n 3, m 1, 2n 5m 11, 11 NaCl S11.,2n 5m 3 2, 3 NaCl,. 24), n m,,., Ge 1Sb 4Te 7n 1, m 2, 2n 5m 12, 12 NaCl,, 7 5, 2 NaCl S7 S5.2n 5m 3 0,, 12,. 28) Ge 1Sb 6Te 10n 1, m 3, 2n 5m 17, 5 7 5 3 NaCl S5 S7 S5, 2n 5m 3 2,,,. 25), n m, 5, 7 NaCl,.,, Te, 100, Te,, Ge Sb,,,., 7 1 NaCl, Ge,,, Sb.,,,,,.,,,, DFTdensity functional theory,. 10, 1,. GeTe,,,, NaCl 51 5 2009 10 GeTe-Sb 2Te 3, 1.Composition dependence of the mean volume per single atom for the metastable and stable GeTe-Sb 2Te 3 structures.., GeTe NaCl 6 2R., NaCl Ge 8Sb 2Te 11, 773 K 15,.,, 21P,, Ge 6Sb 2Te 9 17R. 21) 21P,.,, GeTe,,,.,,., 8, GeTe, Ge 2Sb 2Te 5,, GeTe Sb 2Te 3 3 1 Ge 3Sb 2Te 6,, Shelimova, 9 1,, Ge 9Sb 2Te 12,. 31) GeTe nsb 2Te 3 m,gete nbi 2Te 3 m, 32), Ge Sb 2 nsb 2Te 3 m, 33),34) Bi 2 nbi 2Te 3 m, 32) Bi 2 nbi 2Se 3 m, n, m, 2n 5m,.,, GeTe-Bi 2Te 3 GST GBT, 4 1 5 1 Ge 4Bi 2Te 713R, 35) Ge 5Bi 2Te 815P,.,,,., 3 -A-B-C-,, 36)., 297

c* sub,, 1 q γ c* sub γn, m, 1 γ 3n 3m/2n 5m,,. 1 γ,, 3/2, 18/11, 5/3, 12/7, 7/4, 30/17, 9/5.,, h k 0,,,.,, JANA2000 37) 20), γ. 25),, Bi-Te, 38) Bi-Se 39),,,.,, Sb 2 nsb 2Te 3 m,,.,,, γ,., GeTe-Sb 2Te 3,., NaCl,,,.., GeTe-Sb 2Te 3., NaCl.,,,,.,,,.,, Ge Sn, Sb Bi, Te Se,,,,, NaCl.,.,,,,,,,..,,., 1 PB, 10 15 Byte,,.,,,,,.,.,, 1 TB, 10 12 Byte, A4 2 kb, 1 TB 1, 5.,,,, CO 2.,,.,,,,..,.,. X,, SPring-8. 1,, 38, 5, 357 (2003). 2M. Wuttig and N. Yamada: Nat. Mater. 6, 824 (2007). 3,,, 1979. 4O. G. Karpinsky, L. E. Shelimova, M. A. Kretova and J-P. Fleurial: J. Alloys Compd. 268, 112 (1998). 5N. Yamada, E. Ohno, K. Nishiuchi and N. Akahira: J. Appl. Phys. 69, 2849 (1991). 6N. Yamada and T. Matsunaga: J. Appl. Phys. 88, 7020 (2000). 7J. J. Kim, K. Kobayashi, E. Ikenaga, M. Kobata, S. Ueda, T. Matsunaga, K. Kifune, R. Kojima and N. Yamada: Phys. Rev. B 75, 115124 (2007). 8T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata and M. Takata: Inorg. Chem. 45, 2235 (2006). 9A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga and T. Uruga: Nat. Mater. 3, 703 (2004). 10M. A. Paesler, D. A. Baker, G. Lucovsky, A. E. Edwards and P. C. Taylor: J. Phys. Chem. Solids 68, 873 (2007). 11J. Akola and R. O. Jones: Phys. Rev. B 76, 235201 (2007). 12S. Kohara, K. Kato, T. Usuki, K. Suzuya, H. Tanaka, Y. Tanaka, S. Kimura, H. Tanaka, Y. Moritomo, T. Matsunaga, N. Yamada, H. Suematsu and M. Takata: Appl. Phys. Lett. 89, 201910 (2006). 13N. F. Mott: Philos. Mag. 19, 835 (1969) 14T. Matsunaga, N. Yamada, R. Kojima, S. Shamoto, M. Sato, H. Tanida, T. Uruga, S. Kohara, M. Takata, P. Zalden and M. Wuttig: Nat. Mater.under submission 15Th. Proffen, T. Egami, S. J. L. Billinge, A. K. Cheetham, D. Louca and R. B. Parise: Appl. Phys. A: Mater. Sci. Process. 74, S163 (2002). 16T. Egami and S. J. L. Billinge: Underneath the Bragg Peaks 298 51 5 2009

Structural Analysis of Complex MaterialsOxford Pergamon, Elsevier, 2003. 17S. Shamoto, N. Yamada, T. Matsunaga, T. Proffen, J. W. Richardson, J. H. Chung and T. Egami: Appl. Phys. Lett. 86, 081904 (2005). 18T. Matsunaga and N. Yamada: Jpn. J. Appl. Phys. 41, 1674 (2002). 19H. M. Rietveld: J. Appl. Cryst. 2, 65 (1969). 20, X,, 2002. 21T. Matsunaga, H. Morita, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata, J. -J. Kim, M. Kobata, E. Ikenaga and K. Kobayashi: J. Appl. Phys. 103, 093511 (2008). 22B. K. Vainshtein, V. M. Fridkin and V. L. Indenbom: Structure of CrystalsSpringer-Verlag, Berlin, 1995. 23N. Kh. Abrikosov and G. T. Danilova-Dobryakova: Izv. Akad. Auk. SSSR Neorg. Mater. 1, 204 (1965). 24T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota and M. Takata: Appl. Phys. Lett. 90, 161919 (2007). 25T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota and M. Takata: Acta Cryst. Bunder submission 26T. Matsunaga, N. Yamada and Y. Kubota: Acta Cryst. B 60, 685 (2004). 27T. Matsunaga and N. Yamada: Phys. Rev. B 69, 10, 104111 (2004). 28T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota and M. Takata: Chem. Mater. 20, 5750 (2008). 29R. W. G. Wyckoff: Crystal StructuresKrieger, Malabar, 1963 Vol.2. 30L. E. Shelimova, O. G. Karpinskii, P. P. Konstantinov, M. A. Kretova, E. S. Avilov and V. S. Zemskov: Inorg. Mater. 37, 342 (2001). 31L. E. Shelimova, O. G. Karpinsky, V. S. Zernskov and P. P. Konstantinov: Inorg. Mater. 36, 235 (2000). 32L. E. Shelimova, O. G. Karpinskii, M. A. Kretova, E. S. Avilov and G. U. Lubman: Inorg. Mater. 33, 453 (1997). 33K. Kifune, Y. Kubota, T. Matsunaga and N. Yamada: Acta Cryst. B 61, 492 (2005). 34P. F. P. Poudeu and M. G. Kanatzidis: Chem. Commun. 2672 (2005). 35T. Matsunaga, N. Yamada, K. Kifune, Y. Kubota: SPring-8 experiment report 2007B1730 (2007). 36 40, 161 (1998). 37V. Petříček and M. Dušek: Jana2000 Crystallographic Computing Program, Institute of Physics, Academy of Sciences of the Czech Republic, Praha (2000). 38J. W. G. Bos, H. W. Zandbergen, M. -H. Lee, N. P. Ong and R. J. Cava: Phys. Rev. B 75, 195203 (2007). 39H. Lind and S. Lidin: Solid State Sci. 5, 47 (2003). Toshiyuki MATSUNAGA Materials Science and Analysis Technology Center, Panasonic Corporation 570-8501 3-1-1 3-1-1 Yagumo-Nakamachi, Moriguchi, Osaka 570-8501, Japan, Noboru YAMADA Digital & Network Technology Development Center, Panasonic Corporation 570-8501 3-1-1 3-1-1 Yagumo-Nakamachi, Moriguchi, Osaka 570-8501, Japan Kouichi KIFUNE Faculty of Liberal Arts and Sciences, Osaka Prefecture University 599-8531 1-1 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan TEL. 072-254-9194, FAX. 072-254-9927 e-mail: kifune@las.osakafu-u.ac.jp Yoshiki KUBOTA Graduate School of Science, Osaka Prefecture University 599-8531 1-1 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan TEL. 072-254-9193, FAX. 072-254-9193 e-mail: kubotay@p.s.osakafu-u.ac.jp 51 5 2009 299