ms.dvi

Similar documents
proc.dvi

Title 絶対温度 <0となり得る点渦系の平衡分布の特性 ( オイラー方程式の数理 : 渦運動 150 年 ) Author(s) 八柳, 祐一 Citation 数理解析研究所講究録 (2009), 1642: Issue Date URL

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Untitled

Gmech08.dvi

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Gmech08.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

TOP URL 1

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d



b3e2003.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

TOP URL 1

( ) ( )

TOP URL 1

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

DVIOUT-fujin

untitled

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


master.dvi

i


1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

構造と連続体の力学基礎

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

A

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =

IA

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

chap03.dvi

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

201711grade1ouyou.pdf

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

ohpr.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

KENZOU Karman) x

第1章 微分方程式と近似解法

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

QMII_10.dvi

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

08-Note2-web

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

all.dvi

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a


notekiso1_09.dvi

30

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

Contents 1 Jeans (

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

II 2 II

TOP URL 1

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP


pdf

Microsoft Word - 11問題表紙(選択).docx

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

第10章 アイソパラメトリック要素

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

ohpr.dvi

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

Transcription:

( ) 2010 11 21 1 review Onsager [1] 2 2 1 1 PPM 2010-09

図 1: 実験装置の図 写真中央にある円筒形の容器が超電導コイルで囲まれた真空 容器で この中に電子を閉じ込める 左側の四角い箱の中には光学系が設置されて おり 電子の像を箱左端の CCD カメラへ導く役割を担う このようにして超電導マ グネットから CCD カメラを遠ざけないと 強磁場の影響を受け正しい撮像が行え ない 2 本研究の背景 本研究のスターティングポイントは 京都大学の際本研究室で行われていた非中 性プラズマを用いた渦実験である [2 4] 図 1 に実験装置の写真を示す 普通 プラ ズマ状態といえば 元々電気的に中性だった原子 分子が電離してイオンと電子に 分離した状態なので 巨視的に見れば電気的には中性となる 非中性プラズマとは この電気的な中性条件が破れた状態のプラズマを指し 電気的に負の粒子である電 子のみから構成されたプラズマ (純電子プラズマ) などが該当する この実験装置では 純電子プラズマを円筒容器の軸方向に超電導コイルで印加し た最大 2T の磁場により径方向に 両端の電極に印加した負電位により軸方向に そ れぞれ閉じ込める (図 2) すると 導体の円筒容器と電子の間に径方向内向きの電 場が発生する この電場と軸方向磁場により 電子は E B 方向に回転運動をする (理由は後述) 一方 電子は磁場に平行方向には自由に運動することができるので 両端の負電位の間を高速に往復運動する すなわち 電子は全体として軸方向に高 速な往復運動を繰り返しながら 軸の周りにゆっくり回転していく 2T における典型的パラメタを表 1 に示す ここで注目すべき点は 磁場に垂直面 内での運動の時間スケールが 100ms のオーダなのに対して 磁場方向の往復運動の 周期が 3ms と約 2 桁短いことである これは すなわち 磁場に垂直な方向のどこ PPM 2010-09 2

B E Rotation Trap and hold 2: 2T E B 1: 2T 100 ms 10 13 /m 3 360mm 600mm 3ms 0.3 ev 1/e 0.15 m 10 9 3 PPM 2010-09

P θ P θ = p θi = i i m e r 2 i θ i + e B 0 2 r2 i (1) m e e B 0 i p θi r i θ i 1 2 m e r 2 i θ i eb 0 r 2 i 2 m ev eb =2 0 r i =2 r L r i (2) r i θi = v r L r i (1) 1 2 P θ i e B 0 2 r2 i = const. (3) 1 2 ẑ B = B 0 ẑ (4) dv m e = e(e + v B) (5) dt ( 0) v = E B B 2 (6) E B E B (4) (6) E = φ (7) v = 1 B 0 ẑ φ (8) PPM 2010-09 4

3: (a) 2(b) 3(c) 4 Kelvin-Helmholtz ω z ẑ = v = ẑ B 0 2 φ = en ɛ 0 B 0 ẑ (9) (9) n (ẑ ) φ v = = 0 (10) n + v n = 0 (11) t e/(ɛ 0 B 0 ) ω z t + v ω z = 0 (12) 2 ( ) 1 2 Kelvin-Helmholts(Diocotron) 3 CCD 2 3 4 6 7 1! B 0 5 PPM 2010-09

3 3.1 N/2 N/2 R 2 i (i =1, 2, N) r i =(x i y i ) Ω i Dirac ω z (r,t)= Ω i δ(r r i (t)) (13) i G(r) Green ψ(r,t) = i Ω i G(r r i (t)) (14) u(r,t) = ẑ ψ(r,t) (15) ω z (r,t)ẑ = 2 ψ(r,t)ẑ = u(r,t) (16) u(r,t)) = (ψ(r,t)) (17) 2 Ω 0 Ω 0 (Ω 0 ) 2 H I H = 1 4π I = 1 4π i j i Ω i Ω j ln r i r j + 1 4π i Ω i Ω j ln r i r j j Ω i Ω j ln R r j, (18) i j Ω i r i 2 (19) i (18) 3 R 2 r j r j = R2 r j 2 (20) (18) H 2! Ω i dx i dt Ω i dy i dt = H y i, (21) = H x i (22) PPM 2010-09 6

4: 10 4 2 10 4 2 dr i dt = 1 2π j i Ω j (r i r j ) ẑ r i r j 2 + 1 2π j Ω j (r i r j ) ẑ r i r j 2 (23) (23) 2 (23) 2 2 MDGRAPE- 2 MDGRAPE-3 2 Core 2 Quad 4 CPU GPU(Graphic Processing Unit) MDGRAPE-3 7 PPM 2010-09

2: CPU Memory FSB Clock Dual Core Core 2 Duo E6750 (2.66GHz) DDR2 800 4GB 1333MHz Quad Core Core 2 Quad Q6600 (2.4GHz) DDR2 800 4GB 1066MHz MDGRAPE-2 Pentium4 2.4GHz DDR 266 512MB 533MHz MDGRAPE-3 Pentium4 660 (3.6GHz) DDR2 667 2GB 800MHz W(E) E 5: 3.2 β β = ds de = d log W (E) de W (E) E β ( 5) E W 0 E 0 E >E 0 d ln W/dE < 0 ( 6) E >E 0 Onsager [1,5] (21) (22) Onsager A dγ (24) dγ =dx 1 dy 1 dx N dy N (25) PPM 2010-09 8

W(E) β β E0 E 6: ( dγ= ) N dxdy = A N (26) Onsager Joyce sinh-poisson 2 ψ = λ sinh(βψ) (27) [6,7] λ ψ [8] [9] [10,11] [12, 13] 4 4.1 6724 ( 3362 ) E I (E,I) 9 PPM 2010-09

7: E 8: I =0 PPM 2010-09 10

β>0 β<0 9: ( ) E 10 8 7 I =0 E E = E 0 E 0 E >E 0 I =0 E 0 29.1 4.2 ( ) 9 (23) 1 ( ) 1 11 PPM 2010-09

10: (Physica D, 51 (1991) 531-538 ) 11: 10 sinh-poisson (Physica D, 51 (1991) 531-538 ) 5 5.1 Leonard review [14] 3 Physica D, 51 (1991) 531-538 Matthaeus 2 Navier-Stokes 2 10 2 Navier-Stokes ω z t + u ω z = ν 2 ω z (28) R = ν 1 = 14286 (29) Δt = 1 2048 (30) 3 Leonard It now appears that using an increased number of point vortices of decreased strength will not yield a converged solution.... Ironically, best results with the point vortex method often are achieved by using only a few vortices with a diffusive time integration scheme. PPM 2010-09 12

12: (Physica D, 51 (1991) 531-538 ) 11 12 1 2 sinh-poisson [7] Leonard Matthaeus 2 Euler 5.2 2 ω z (r,t) t + u ω z (r,t) = 0 (31) (13) t ω z(r,t) = ( ) Ω i δ(r r i (t)) t i = ( ) Ω i i t r i(t) δ(r r i (t)) = u(r,t) ω z (r,t) (32) 13 PPM 2010-09

ω z t + u ω z = viscous term (33) ˆ ˆω z (r,t) ω z (r,t) ˆω z (r,t) SE (34) S E Λ ˆω z (r,t) S = 1 dr ˆω z (r,t) (35) Λ Λ(r) r ˆω z (r,t) = i Ω i δ(r r i (t)) = ω z (r,t)+δω z (r,t) (36) ˆψ(r,t) = i Ω i G(r r i (t)) (37) û(r,t) = ẑ ˆψ(r,t) (38) 5.3 ˆω z t + û ˆω z = 0 (39) (36) t ω z(r,t)+ [u(r,t)ω z (r,t)] = δu(r,t)δω z (r,t) SE (40) ( ) PPM 2010-09 14

δω z (r,t) (39) (36) 1 t δω z(r,t)+u(r,t) δω z (r,t)= δu(r,t) ω z (r,t) (41) 2 u(r,t) ω z (r,t) δω z (r,t)= t dτδu (r (t τ)u,τ) ω z (r,t) (42) δω z (r,t= ) =0 (40) δu(r,t)δω z (r,t) SE = ( η ω z ) η = t dτ δu(r,t)δu(r (t τ)u,τ) SE (43) 6 2 Klimontovich formula Leonard [1] L. Onsager: Nuovo Cimento Suppl. 6 (1949) 279. [2] : 56 (2001) 253. 15 PPM 2010-09

[3] Y. Kiwamoto, K. Ito, A. Sanpei and A. Mohri: Phys. Rev. Lett. 85 (2000) 3173. [4] Y. Kiwamoto, N. Hashizume, Y. Soga, J. Aoki and Y. Kawai: Phys. Rev. Lett. 99 (2007) 115002. [5] G. L. EyinkandK. R. Sreenivasan: Rev. Mod. Phys. 78 (2006) 87. [6] G. Joyce and D. Montgomery: J. Plasma Phys. 10 (1973) 107. [7] D. Montgomery and G. Joyce: Phys. Fluids 17 (1974) 1139. [8] S. Kida: J. Phys. Soc. Jpn. 39 (1975) 1395. [9] R. A. Smith and T. M. O Neil: Phys. Fluids B 2 (1990) 2961. [10] D. J. Johnson: Phys. Fluids 31 (1988) 1856. [11] O. Bühler: Phys. Fluids 14 (2002) 2139. [12] T. S. Lundgren and Y. B. Pointin: J. Stat. Phys. 17 (1977) 323. [13] Y. B. Pointin and T. S. Lundgren: Phys. Fluids 19 (1976) 1459. [14] A. Leonard: J. Comput. Phys. 37 (1980) 289. PPM 2010-09 16