kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

Similar documents
Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

TOP URL 1

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

30

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Part () () Γ Part ,

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

QMI_09.dvi

QMI_10.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

高知工科大学電子 光システム工学科

DVIOUT-fujin




4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

量子力学 問題

構造と連続体の力学基礎

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

( )

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

2000年度『数学展望 I』講義録

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

201711grade1ouyou.pdf

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

: , 2.0, 3.0, 2.0, (%) ( 2.

Z: Q: R: C: sin 6 5 ζ a, b

A

IA

meiji_resume_1.PDF

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

keisoku01.dvi

SFGÇÃÉXÉyÉNÉgÉãå`.pdf


春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

chap9.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Untitled


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

QMII_10.dvi


TOP URL 1

2011de.dvi

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

19 /

December 28, 2018


80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

newmain.dvi

05Mar2001_tune.dvi

The Physics of Atmospheres CAPTER :

Z: Q: R: C:

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =


1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

gr09.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

第1章 微分方程式と近似解法

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

振動と波動

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

pdf

基礎数学I

KENZOU

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

Note.tex 2008/09/19( )

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

( ) ,

Transcription:

Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................ 5 3.2 HBT..................................... 6 3.3 Mandel.................................. 6 3.4................................................ 8 3.5.................................. 9 A 11 1 1 Hanbury-Brown Twiss Mark Fox Quantum Optics An Introduction 1 1

kawa h@tmu.ac.jp (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2.1 van Cittert - Zernike (mutual coherence function) Γ(Q 1, Q 2, τ) V (Q 1, t)v (Q 2, t + τ) (1) (complex degree of coherence) γ(q 1, Q 2, τ) V (Q 1, t)v (Q 2, t + τ) I(Q1 )I(Q 2 ) (2) Sm Rm2 Rm1 P2 P1 1: S m P 1, P 2 1 S m A m P 1 P 2 V m1 (t) = A m (t R m1 /c) e iω(t Rm1/c) R m1 (3) V m2 (t) = A m (t R m2 /c) e iω(t Rm2/c) R m2 (4) 2

P 1 P 2 Γ(P 1, P 2, ) V (P 1 )V (P 2 ) (5) = m A m(t R m1 /c)a m (t R m2 /c) e iω(r m2 R m1 )/c R m1 R m2 (6) R m1 R m2 2πc/ ω A m Γ(P 1, P 2, ) = m (7) A m(t)a m (t) e iω(r m2 R m1 )/c R m1 R m2 (8) I(S) e iω(r2 R1)/c R 1 R 2 ds (9) R m1 R 1 R m2 R 2 1 γ(p 1, P 2, ) = I(S) e iω(r 2 R 1 )/c ds (1) I(P1 )I(P 2 ) R 1 R 2 I(S) I(P j ) Γ(P j, P j, ) = ds (11) van Cittert-Zernike (α, β) P 1,P 2 (X 1, Y 1 ), (X 2, Y 2 ) R 2 j γ(p 1, P 2, ) = eiψ dαdβi(α, β)e ik(αx+βy) dαdβi(α, β) (12) ψ k[(x2 2 + Y 2 2 ) (X 2 1 + Y 2 1 )] 2R x X 2 X 1, y Y 2 Y 1 P 1, P 2 ( ) mutual coherence ( ) P 1 P 2 (13) 2.2 mutual coherence mutual coherence 12 ρ b γ(p 1, P 2, ) = 2J 1(ν) e iψ (14) ν ν kρb (15) 3

γ(p 1, P 2, ) = 2J 1(ν) ν mutual coherence (16) b =.61 λ ρ (17) 6.3 mas ( ).5 µ m 1 m.5 1 6.61 1m (18).63π/(36 18) P 1 P 2 Q V (Q, t) = k 1 V (P 1, t t 1 ) + k 2 V (P 2, t t 2 ) (19) I(Q) = V (Q, t)v (Q, t) (2) = k 1 2 V (P 1, t t 1 )V (P 1, t t 1 ) + k 2 2 V (P 2, t t 2 )V (P 2, t t 2 ) + 2Re[ k 1 k 2 V (P 1, t t 1 )V (P 2, t t 2 ) ] (21) = k 1 2 I(P 1 ) + k 2 2 I(P 2 ) + 2 k 1 k 2 Re[Γ(P 1, P 2, t 1 t 2 )] (22) = I (1) (Q) + I (2) (Q) + 2 I (1) (Q)I (2) (Q)Re[γ(P 1, P 2, t 1 t 2 )] (23) (I (j) (Q) ) γ(p 1, P 2, t 1 t 2 ) A(t) Φ(t) δ = ντ = 2π(R 2 R 1 )/λ 2I (1) (Q)(1 ± γ(p 1, P 2, t 1 t 2 ) ) (24) (I (1) = I (2) ), mutual coherence visibility γ(p 1, P 2, τ) = I max(p ) I min (P ) I max (P ) + I min (P ) τ = visibility γ(p 1, P 2, ) (25) 3 Hanbury-Brown Twiss ( ) visibility mutual coherence ( ) mutual coherence phase 4

P2 Q P1 2: P2 P1 3: 3.1 5 Hanbury-Brown ( ) I(r j, t) I(r j, t) I(r j, t) (26) I(r 1, t) I(r 2, t + τ) = (I(r 1, t) I(r 1, t) )(I(r 2, t + τ) I(r 2, t + τ) ) (27) = I(r 1, t)i(r 2, t + τ) I(r 1, t) I(r 2, t + τ) (28) = V (r 1, t)v (r 1, t)v (r 2, t + τ)v (r 2, t + τ) V (r 1, t)v (r 1, t) V (r 2, t + τ)v (r 2, t + τ) (29) V x j Lsserlis x 1x 2 x 3x 4 = x 1x 2 x 3x 4 + x 1x 4 x 2 x 3 I(r 1, t) I(r 2, t + τ) = V (r 1, t)v (r 2, t + τ) V (r 2, t + τ)v (r 1, t) (3) = Γ(r 1, r 2, τ)γ(r 1, r 2, τ) (31) = Γ(r 1, r 2, τ) 2 (32) 2 2 Γ(r 1, r 2, τ) = Γ (r 1, r 2, τ) 5

3.2 HBT Hanbury-Brown Twiss Hanbury-Brown Narrabri Stellar Intensity Interferometer 32 (Hanbury-Brown, Davis, Allen 1974) 32 mas ζp up.41 ±.3 mas (1969 ) 4 Bigot et al. 211.445 mas beam spliter 2 PhotoMultiplier 1 PhotoMultiplier correlator 4: HBT (33) g 2 ( ) g 2 1 g 2 (τ) = γ(r 1, r 2, τ) 2 + 1 (33) g 2 (τ) I(r 1, t)i(r 2, t + τ) (34) I(r 1, t) I(r 2, t + τ) 3.3 Mandel Mandel HBT Mandel t-t + t I(t) = V (t)v (t) P (t) = αi(t) t (35) α t t + T n p(n, t, T ) T T/ t 6

t r1,..., t rn ( ) 1 T/ t T/ t T/ t rn T/ t p(n, t, T ) = lim... (α t) n I(t t n! r ) i= [1 αi(t i)δt] n j=1 [1 αi(t (36) rj)δt] r1= r2= 1 3 = lim { 2} t n! 1 rn= r=r1 (37) 1 1 no(δt) 1 (38) n [ T/δt ] n t+t 2 αi(t r1 )δt α I(t )dt (39) 3 exp r 1= [ α t+t t I(t )dt ] t (4) p(n, t, T ) = 1 n! [αw (t, T )]n e αw (t,t ) (41) W (t, T ) t+t t I(t )dt (42) I W p(w ) { } 1 P (n, t, T ) = p(n, t, T ) = dw p(w ) n! [αw (t, T )]n αw (t,t ) e (43) p(n, t, T ) = dw p(w )P p (n, W ) (44) ( dw p(w )f(w ) f(w ) ) Mandek {} P p (n, W ) t t + T n = = np(n, t, T ) = n= dw p(w ) np p (n, W ) (45) n= dw p(w )αw (46) = αw (47) n 2 = np(n, t, T ) = dw p(w ) n 2 P p (n, W ) (48) = n= n= dw p(w )(αw + α 2 W 2 ) (49) = αw + α 2 W 2 (5) ( n) 2 = n 2 n 2 = αw + α 2 W 2 α 2 W 2 (51) = n + α 2 [ W ] 2 (52) 7

Intensity ( n) 2 > n ( ) ( n) 2 = n ( n) 2 < n ( ) HBT Mandel n 1 n 2 = = n 1 n 2 p 1 (n 1, t, T )p 2 (n 2, t, T ) (53) n 1 = n 2 = n 1 p 1 (n 1, t, T ) n 2 p 2 (n 2, t, T ) = α 1 α 2 W 1 W 2 (54) n 1= n 2= n 1 n 2 = n 1 n 2 n 1 n 2 = α 1 α 2 W 1 W 2 (55) W j W j W j (56) W 3.4 E n = (n + 1/2)ħω (57) n : P ω (n) = exp ( E n /kt ) n= exp ( E n/kt ) (58) = x n n= xn (59) = x n (1 x) (6) x exp ( ħω/kt ) (61) 8

n= xn = 1/(1 x) (x < 1) n = = np ω (n) (62) n= nx n (1 x) (63) n= = (1 x)x d dx = (1 x)x d dx x = 1 x ( ) x n n= ( 1 1 x ) (64) (65) (66) (67) n = 1 exp (ħω/kt ) 1 (68) P ω (n) n Bose-Einstein ( n) 2 = P ω (n) = 1 ( ) n n (69) n + 1 n + 1 (n n) 2 P ω (n) = n + n 2 (7) n= N m (Mandel & Wolf 95) ( n) 2 = n + n 2 /N m (71) 68 HBT 3.5 HBT HBT 3 3 Jam session 9

1: creation and annihilation operators : â n = n + 1 n + 1 â n = n n 1 â = [â, â ] = 1 number operator : ˆn = â â ˆn n = n n Hamiltonian : Ĥ = ħω (ˆn ) + 1 2 Ĥ ψ = ħω ( n + 2) 1 ψ HBT 4 g 2 (τ) g 2 (τ) = n 1(t)n 2 (t + τ) n 1 (t) n 2 (t + τ) (72) g 2 (τ) = â 1 (t)â 2 (t + τ)â 2(t + τ)â 1 (t) â 1 (t)â 1(t) â 2 (t + τ)â 2(t + τ) (73) normal ordering (Mandel & Wolf 95) â 1 = â / 2 (74) â 2 = â / 2 (75) â 1â1 = ψ â â ψ /2 = ψ ˆn ψ /2 (76) â 2â2 = ψ â â ψ /2 = ψ ˆn ψ /2 (77) â 1â 2â2â 1 = ψ â â ââ ψ /4 (78) = ψ â (â â 1)â ψ /4 (79) = ψ ˆn (ˆn 1) ψ /4 (8) (81) g 2 (τ) = ˆn(ˆn 1) ˆn 2 (82) 1

( ) photon number state: ψ photon number state n coherent state: g 2 (τ) = coherent state α â α = α α : n(n 1) n 2 < 1 (83) ( n) 2 = n (ˆn n) 2 n (84) = n ˆn 2 n n 2 = (85) α â â ââ α = α 4 (86) α â â α = α 2 (87) g 2 (τ) = 1 (88) ( n) 2 = α (ˆn n) 2 α (89) = α ˆn 2 α n 2 (9) = α â ââ â α n 2 (91) = α â â + â â ââ α n 2 (92) = (n + n 2 ) n 2 = n (93) 4 (?) A V (r) (t) a(ν) cos (ϕ(ν) 2πνt) V (r) (t) = 4 TeX dν a(ν) cos (ϕ(ν) 2πνt) (94) 11

2: g 2 (τ) > 1 ( n) 2 > n g 2 (τ) = 1 ( n) 2 = n g 2 (τ) < 1 ( n) 2 < n 5 V (t) = V (r) (t) + iv (i) (t) = V (i) (t) dν a(ν)e i(ϕ(ν) 2πνt) (95) dν a(ν) sin (ϕ(ν) 2πνt) (96) ν ν δν/ν 1 ν ν = ν V (t) = A(t)e i(φ(t) 2πνt) = (A(t) e iφ(t) ) e 2πiνt (97) A Φ (95) (97) A(t) e iφ(t) = { V (t) = (A(t) e iφ(t) ) e 2πiνt = µ [ dµ a(µ) e iϕ(µ)] e 2πµt (98) µ ν ν (99) µ dµ [a(µ) e iϕ(µ)] } e 2πµt e 2πiνt (1) a(µ) µ = ν ν = {} µ = ν ν ν e 2πiνt ν µ (97) A(t) e iφ(t) A(t) Φ(t) ν A(t) Φ(t) 5 12