COGNACのコンセプト \(COarse Grained molecular dynamics program developed by NAgoya Cooperation\)

Similar documents
OCTAプロジェクト:物質の多階層シミュレーション

MUFFIN3

スライド タイトルなし

4/15 No.

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

02-量子力学の復習

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

A 99% MS-Free Presentation

q ŁŁ

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

2012専門分科会_new_4.pptx

untitled

高知工科大学電子 光システム工学科



D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

株式会社ローソン 第26期中間事業報告書

Introduction 2 / 43

PDF

211 ‚æ2fiúŒÚ

卒業論文

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Oregano

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi


IPSJ SIG Technical Report Vol.2014-ARC-213 No.24 Vol.2014-HPC-147 No /12/10 GPU 1,a) 1,b) 1,c) 1,d) GPU GPU Structure Of Array Array Of

-

SAXS Table 1 DSC POM SAXSSAXS PF BL-10C BL-15A Fig. 2 LC12 DSC SAXS 138 C T iso T iso SAXS q=1.4 nm -1 q=(4π/λ)sin(θ/2), λ:, θ: Fig. 3 LC12 T iso Figu

A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ssp2_fixed.dvi

.I.v e pmd

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

1 2 2 (Dielecrics) Maxwell ( ) D H

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

untitled

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

研究室ガイダンス(H28)福山研.pdf

i

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

2357

( ) ) AGD 2) 7) 1


BIT -2-

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

untitled

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

IPSJ SIG Technical Report NetMAS NetMAS NetMAS One-dimensional Pedestrian Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yam

CHARACTERISTICS OF LOVE WAVE GENERATED AROUND A DIPPING BASEMENT By Susumu NAKAMURA, Iwao SUETOMI, Shinichi AKIYAMA and Nozomu YOSHIDA Source mechanis

Nosé Hoover 1.2 ( 1) (a) (b) 1:

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

2007年08月号 022416/0812 会告

ε

修士論文 物性研究 電子版 Vol. 5, No. 2, (2016 年 5 月号 ) 27-2 F14A001B

LLG-R8.Nisus.pdf

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

chap1_MDpotentials.ppt

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100



Made for Life Report 2008

Microsoft Outlook 2013

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

力学的性質

EGunGPU



96 7 1m = N 1A a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A


-5 -

別冊 各分野における虐待事例と分析

国文研ニューズ35.indd

JSplus23蜿キ.indd

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

9 8 7 (x-1.0)*(x-1.0) *(x-1.0) (a) f(a) (b) f(a) Figure 1: f(a) a =1.0 (1) a 1.0 f(1.0)

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

003村江.indd

1

HREM Manual37JFAQ

JFE.dvi

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0


t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

I

( ) I( ) TA: ( M2)

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

結婚生活を強める

Lennard Jones Steele * K N nm imac 2015 Mac mini OS *1 N V T

IV (2)

koji07-02.dvi

Transcription:

COGNAC (COarse-Grained molecular dynamics program by NAgoya Cooperation) ( ),

0 sec -3 msec -6 sec -9 nsec -12 psec -15 fsec GOURMET SUSHI PASTA COGNAC MUFFIN -15-12 -9-6 -3 0 fm pm nm m mm m

United atom model (CH 2 ) Gay-Berne potential model Bead-spring model

Molecular dynamics (MD) Ensembles»NVE» NVT,NPH,NPT (loose-coupling / extended Hamiltonian methods) Langevin dynamics Molecular mechanics (MM) Steepest descent / conjugate gradient methods

Bonding 2-body(bond):Harmonic,Morse,FENE,Gaussian, Polynomial,Table 3-body(angle):Theta harmonic,cosine harmonic Theta polynomial,table 4-body(torsion):Cosine polynomial,table Non-bonding pair interaction Lennard-Jones,Gay-Berne,LJ-GB, Table Electrostatic Coulomb interaction(ewald,reaction field) Dipole-dipole interaction (Reaction field)

: Gay-Berne - Lennard-Jones hybrid potential C CH 2 H 2 C CH 2 H 2 C CH 3 ncb (4-methyl-4 -cyanobiphenyl) Ellipsoid Sphere Smectic phase(non-polar model) Nematic phase(polar model)

SILK (1) SILK COGNAC SILK Python GOURMET SILK

SILK (2) name="mol" nummol=10 self.engine.createmolecule(name) for i in range(0, 4): self.engine.addatoms(name, "UA", "UA_PE") for i in range(0, 3): self.engine.addbonds(name, i, i+1, "BOND_PE") for i in range(0, 2): self.engine.addangles(name, i, i+1, i+2, "ANGLE_PE") for i in range(0, 1): self.engine.addtorsions(name, i, i+1, i+2, i+3, "TORSION_PE") for i in range(0, 4): self.engine.addinteractionsites(name, [i], "NB_PE", "PAIR") self.engine.setsystem(name, nummol)

SILK (3) name="a20b40a20" nummol=50 key="linear" sequence=[("a",20),("b",40),("a",20)] atomtype={"a":"atom1", "B":"atom2"} bondtype={"a_a":"bond1", "A_B":"bond3", "B_B":"bond2"} interactionsitetype={"a":"sitetype1", "B":"siteType2"} self.engine.makebeadspringpolym(name, nummol, key, sequence, atomtype, bondtype, interactionsitetype)

Action SILK gift Action GOUMET SILK Selection of diblock

COGNAC Random: Amorphous like structures Helix: Helical structures at regular lattice points Crystal: Crystal structures defined by crystal data, i.e. unit lattice, symmetric operation and fractional coordinates Semi-crystalline lamella: Semi-crystalline lamella structures consisting of a crystal phase and an amorphous phase Multi phase structure: Micro/macro phase-separeted structures of block copolymer/polymer blend obtained by SUSHI

mol/pdb UDF WebLab ViewerLite (TM) mol GOURMET UDF

UDF PDB/car/XYZ GOURMET UDF WebLab ViewerLite (TM) car

etc. Lees-Edwards MD»

Clay(laponite) - Polymer(PEO) composite clay-polymer Clay

20nm 20nm

Density biased Monte Carlo (DBMC) Density biased potential (DBP) SUSHI Staggered reflective boundary condition (SRBC) Lamella builder

ABA triblock copolymer ABA triblock copolymer SUSHI Loop/Bridge

ABA triblock copolymer 300% Strain BCC sphere phase εσ

A/B εσ ε τ elongation δε δε δε δε

6nm elongation

COGNAC C++ COGNAC UserBond1, UserAngle1 #include "userbond1.h" double UserBond1::calcforce(const Vector3d& dr, Vector3d& ftmp) { double r,delr,ene,tmp; } r=dr.length(); delr=r-r0; tmp=kconst*delr; ftmp=dr*(tmp/r); ene=0.5*tmp*delr; return ene;

DPD Dissipative particle dynamics (DPD) dr dt i dv = vi, dt i = f i f i F C ij = ( C D R F + + ) ij Fij Fij i j aij = 0 ( 1 r ) ( < ) ij rˆ ij rij ( r 1) ij 1, F D ij D = w ( )( ) R R r ( ) ij rˆ ij vij rˆ ij, Fij = w rij ijrˆ ij

Action Python molecules/atoms/bonds ABA triblock copolymers A

COGNAC Python»»»»»»

GOURMET Action GOURMET Action

:

: -

UDF HELP

COGNAC UDF unit parameters reduced mass in [amu] reduced energy in [kj/mol] reduced length in [nm].

COGNAC: χ MUFFIN SUSHI PASTA COGNAC

COGNAC : MD/MM

COGNAC JCII