修士論文 物性研究 電子版 Vol. 5, No. 2, (2016 年 5 月号 ) 27-2 F14A001B

Size: px
Start display at page:

Download "修士論文 物性研究 電子版 Vol. 5, No. 2, (2016 年 5 月号 ) 27-2 F14A001B"

Transcription

1 27-2 F14A001B

2 (Molecular Dynamics: MD) Verlet (Verlet Neighbor List: VNL ) (Cell Linked List: CLL ) (VNL-CLL ) VNL MD 10 VNL ( ) CLL ( ) CLL ( ) VNL O(N 2 ) CLL O(N 2 ) O(N) VNL-CLL VNL-CLL Verlet ( ). VNL ( ) i

3 i SKIN( ) VNL-CLL ii

4 1 (Molecular Dynamics: MD ) (Monte Carlo: MC ) MC MD MD [1 4] 1.1 MD MC 2 ( pair potential) 4 m N U N ({r i }) r i i {r i } 2 φ(r) / ε r / σ 1.1 Lennard-Jones(LJ) LJ 1

5 r 2 (pair potential) φ(r) U N ({r i })= 1 2 N i=1 i =j N φ( r i r j ) (1.1) 1/2 (i j) 2 U N i F i = U N (1.2) r i = 1 N φ(r ij ) 2 r i = 1 2 = = j =i N [ φ(rij ) j =i N j =i N j =i r i dφ(r ij ) dr ij dφ(r ij ) dr ij + φ(r ] ji) r i r ij r i r i r j r ij (r i r j )/r ij j i 2 Lennard-Jones(LJ) 1.1 LJ [ (σ ) 12 ( σ ) ] 6 φ(r) =4ɛ (1.) r r ɛ σ 1 2 r <σ r 1 F = φ(r) = dφ(r) dr r r = 24ɛ σ [ ( σ ) 1 ( σ ) ] 7 r 2 r r r LJ ( ) O(N 2 ) O(N 2 ) O(N) (1.4) 2

6 1.2 φ(r) LJ d 2 r dt 2 = F (t) m (1.5) MD Verlet [1 5] (1.5) Δt 2 t +Δt t Δt r(t ± Δt) r(t +Δt) =r(t)+δtv(t)+ (Δt)2 2 r(t Δt) =r(t) Δtv(t)+ (Δt)2 2 F (t) m + O((Δt) ) (1.6) F (t) m + O((Δt) ) (1.7) r(t +Δt)+r(t Δt) =2r(t)+(Δt) 2 F (t) m + O((Δt)4 ) (1.8) t +Δt t r(t +Δt) r(t Δt) =2Δtv(t)+O((Δt) ) (1.9) r(t +Δt) =2r(t) r(t Δt)+(Δt) 2 F (t) m + O((Δt)4 ) (1.10) v(t) = 1 2Δt {r(t +Δt) r(t Δt)} + O((Δt)2 ) (1.11) Verlet t +Δt t t Δt t =Δt r(δt) 1.7 r(0) r(2δt) (1.11) v(δt) (Δt Δt) (1.11) ( v t + Δt ) = 1 [r(t +Δt) r(t)] (1.12) 2 Δt (1.10) ( v t + Δt ) ( = v t Δt ) +Δt F (t) 2 2 m (1.1) (1.12) r(t +Δt) ( r(t +Δt) =r(t)+δtv t + dt ) 2 (1.14) Verlet (Verlet s leap frog) [1 5] (1.1), (1.14)

7 1.2 L = V 1/ V 1. ( ) CPU (Periodic Boundary Condition) 1.2 x, y, z L = V 1/ V ( 1.2 ) shadow 4

8 minimum image convention 1.4 MD r i (t) v i (t) [6 9] (a) 1 N N N E = φ( r i r j ) + 2 i=1 i =j i=1 1 2 mv2 i (1.15) (NVE ) (b) T (t) T (t) = 1 N mvi 2 (1.16) Nk B T (t) 1 T = T (t) t = lim T (t)dt (1.17) τ τ 0 t (c) Virial i W i F i m d2 r i dt 2 = F i + W i (1.18) i r i r i F i τ 0 i=1 τ [ r i d2 r i dt 2 dt = r i dr ] τ τ i dt 0 0 dr i dt dr i dt (1.19) dt 1 r i v i τ τ N ( ) m dri = 1 N r i (F i + W i ) dt 2 i=1 5 t i=1 t (1.20)

9 Clausiu Virial Virial Virial N N r i W i = Nk B T r i F i i=1 t i=1 t (1.21) Virial P i W i r ds n ds P nds Gauss (d) N r i W i i=1 P = Nk BT V = Nk BT V t + 1 V 1 V = S P n rds = PV (1.22) N r i F i i=1 N r i i U N ({r i }) i=1 t t (1.2) (1.24) 1 (r =0) (r, r + dr) dn(r) dn(r) =ρg(r)4πr 2 dr, ρ = N V (1.25) ρ g(r) r g(r) =1 r 0 g(r) =0 E = E id + E ex (1.26) E id = 2 Nk BT (1.27) E ex = U N ({r i }) = 1 Z N Z N = U N ({r i })exp( U N ({r i })/k B T )dr N (1.28) exp( U N ({r i })/k B T )dr N (1.29) g(r) E ex N =2πρ 6 0 φ(r)g(r)r 2 dr (1.0)

10 (1.24) (1.28) P ρk B T =1 2πρ k B T 0 φ (r)g(r)r dr (1.1) 1.5 ( ) LJ 2 O(N 2 ) O(N) O(N 2 ) 2 VNL-CLL (Verlet Neighbor List: VNL ) (Cell Linked List: CLL ) CLL (Exclusive CLL ) VNL CLL VNL O(N) 1 O(N 2 ) CLL O(N) VNL VNL-CLL VNL CLL 2 VNL VNL CLL 4 VNL CLL VNL-CLL 5 (VNL VNL CLL Exclusive CLL VNL-CLL ) CPU1 LJ NVE 100,000 Fujitsu PRIMERGY RX00 S7 CPU: Intel Xeon E Memory: 8GB Compiler: (R) 64 (R) C XE ( (R) 64 ) (C) Intel Corporation. σ m τ = mσ 2 /k B T ɛ 7

11 ɛ/k B Δt 0.005τ 8

12 2 2.1 r cut r r cut 4πρ rcut 0 drr 2 g(r) 4 πρr cut (2.1) ρ =1.0 LJ r cut = (1000 ) 2.1 SKIN = r list r cut (Verlet Neighbor List: VNL ) [10, 11] O(N 2 ) (VNL) SKIN = r list r cut r cut r list 9

13 O(N 2 ) O(N) VNL VNL Algorithm1 SKIN/2 ( ) r cut r list = r cut +SKIN point[i] i j i VNL j list[i] i=point[i] point[i+1] - 1 Algorithm2 j list[ ] 10 [12 14] Algorithm 2.2(a) v Algorithm 1 Make the Verlet Neighbor List 1: =====Save current configuration.===== 2: for i=0 to NumParticle do : rx0[i] rx[i] 4: ry0[i] ry[i] 5: rz0[i] rz[i] 6: end for 7: =====Make the Verlet Neighbor List.===== 8: (int)nlist 0 9: for i=0 to NumParticle - 1 do 10: point[i] nlist : for j=i+1 to NumParticle do 12: calculate r ij 1: if r ij <r list then 14: nlist nlist : list[nlist] j 16: if r ij <r cut then 17: calculate force 18: end if 19: end if 20: end for 21: end for 22: point[n-1] nlist

14 Algorithm 2 Use the Verlet Neighbor List 1: for i=0 to NumParticle - 1 do 2: j begin point[i] : j end point[i+1] - 1 4: nlist point[i] 5: if j begin <=j end then 6: for j nab =j begin to j end do 7: j list[j nab ] 8: calculate r ij 9: if r ij <r cut then 10: calculate force 11: end if 12: end for 1: end if 14: end for n 2.2(b) v ndt = SKIN/2 (2.2) SKIN/2 MD SKIN/2 VNL Algorithm4 (a) t = t 0 (b) t = t 0 + ndt 2.2 Verlet Neighbor List criterion (a)t = t 0 (b)n 11

15 Algorithm Check update of the Verlet Neighbor List 1: dispmx 0 2: for i=0 to NumParticle do : dispmx max ( rx[i] - rx0[i],dispmx) 4: dispmx max ( ry[i] - ry0[i],dispmx) 5: dispmx max ( rz[i] - rz0[i],dispmx) 6: dispmx.0 dispmx 7: end for 8: if dispmx > SKIN / 2 then 9: Make the Verlet Neighbor List 10: end if Algorithm 4 the Verlet Neighbor List 1: ==== MD loop start ===== 2: for step = 0 to nstep do : move r(t) r(t+dt) and v(t) v(t+dt/2) 4: Check update of the VNL 5: if Need update of the VNL then 6: Make the VNL and calculate force O(N 2 ) 7: else 8: Use the VNL and calculate force O(N) 9: end if 10: move v(t+dt/2) v(t+dt) 11: end for 2.2 SKIN( ) (2.2) max r(t 0 + ndt) r(t 0 ) > SKIN i 2 (2.) n dt t = t 0 SKIN/2 n n T ρ N r cut n+1 n (O(N)) n +1 (O(N 2 )) T VNL = 1 2 Nτ f [ N 1 n +1 + n ( rlist )] 4πρ drr 2 g(r) 1 n +1 0 τ f 1 2 VNL ( ) r list (N, T, ρ, r cut ) (2.) SKIN n (2.4) SKIN = 2n x (2.5) 12

16 x SKIN/2 x D l D x l D l D = Dδt l D r list = l th T 1 2 mv2 = 2 k BT ( ) v x l th l th = v δt v kb T x cδt (2.6) m c Maxwell c = ,000 10, ,000 g(r) =1 rlist 0 drr 2 g(r) r list 1 n +1 T VNL f VNL = 2τ f N(N 1) = 1 n +1 + n [ ] 1 4π n +1N 1 ρr list 1 = 1 n +1 + n n +1 1 N 1 [ 4π ρ(r cut +2n x ) 1 ] (2.7) (2.8) [15] 1 n +1 2 n r list VNL (2.2) n r list SKIN N = 1,000 N = 10,000 N = 100,000 7 p(v x ) v x 2. x T =0.772 ρ =0.8 N =1, 000, 10, 000, 100, kb T/m k B T/m 1

17 SKIN SKIN rlist 4πρ drr 2 g(r) 4 0 πρr list (2.9) O(N 2 ) O(N) ( O(N )) SKIN O(N 2 ) SKIN = N = 1,000 N = 10,000 N = 100,000 time [sec / N] SKIN = r list - r cut 5 6 (a) ( ) 1 ρ = 0.5 ρ = 0.8 ρ = T = 0.5 T = 1.0 T = time [sec / N] time [sec / N] time [sec / N] SKIN (b) SKIN (c) rcut = 2.5 rcut =.5 rcut = SKIN (d) 2.4 SKIN (2.8) (a) (b) (c) (d) (SKIN ) SKIN (O(N 2 )) SKIN 14

18 SKIN L O(N 2 ) SKIN SKIN (2.8) 2.4(a) (d) LJ NVE 100,000 1 SKIN (a) T =0.772 ρ =0.8 r cut =2.5 ( )N = 1, 000, 10, 000, 100, 000 SKIN SKIN = 0.5σ(N = 1, 000), 1.1σ(N =10, 000), 6.σ(N = 100, 000) n +1 VNL O(N 2 ) O(N) ( n ) n SKIN (b) N =1, 000 T =0.772 r cut =2.5 ρ =0.5, 0.8, 1.0 SKIN SKIN = 0.8σ(ρ =0.5), 0.6σ(ρ =0.8), 0.5σ(ρ =1.0).. O(N 2 ) SKIN (c) N =1, 000 ρ =0.8 r cut =2.5 T =0.500, 1.000, SKIN SKIN = 0.4σ(T =0.5), 0.5σ(T =1.0), 0.7σ(T =2.0) n SKIN (d) N =1, 000 T =1.000 ρ =0.8 r cut =2.5,.5, 4.5 SKIN SKIN = 0.6σ(r cut =2.5), 0.4σ(r cut =.5), 0.σ(r cut =4.5) ( O(N ) ) O(N 2 ) 15

19 SKIN 2.4(a) (d) SKIN (2.8) (2.6) c =.0 c =.0 Maxwell k B T/m ( 100,000 k B T/m 1/100, ,000 10, ) c SKIN (2.8) SKIN c =.0 N [1000, 100, 000] VNL O(N 2 ) (N >100, 000) 16

20 .1 L cell L cell r cut L cell.1 ( ) (Cell Linked List: CLL ) [10, 11] ( 100 ) O(N) r cut CLL Algorithm5 icell(ix, iy, iz) Algorithm6 imap (.2).1 (CLL) L cell r cut 17

21 Algorithm 5 Create the maps of the cell list (Cell Index) 1: int ix, iy, iz 2: int imap, mapsize, maps[mapsize] : int M ( ) 4: mapsize = 1 * M * M * M (1 M*M*M ) 5: ===== Initialize the array of the map ===== 6: for imap = 0 to mapsize do 7: map[imap] 0 8: end for 9: ===== create the maps of the cell list ===== 10: for iz=0 to M do 11: for iy=0 to M do 12: for ix=0 to M do 1: imap ( icellno(ix, iy, iz) ) * 1; 14: map[ imap + 1 ] icellno( ix+1, iy, iz ); 15: map[ imap + 2 ] icellno( ix+1, iy+1, iz ); 16: map[ imap + ] icellno( ix, iy+1, iz ); 17: map[ imap + 4 ] icellno( ix - 1, iy+1, iz ); 18: map[ imap + 5 ] icellno( ix+1, iy, iz - 1); 19: map[ imap + 6 ] icellno( ix+1, iy+1, iz - 1); 20: map[ imap + 7 ] icellno( ix, iy+1, iz - 1); 21: map[ imap + 8 ] icellno( ix - 1, iy+1, iz - 1); 22: map[ imap + 9 ] icellno( ix+1, iy, iz+1); 2: map[ imap + 10 ] icellno( ix+1, iy+1, iz+1); 24: map[ imap + 11 ] icellno( ix, iy+1, iz+1); 25: map[ imap + 12 ] icellno( ix - 1, iy+1, iz+1); 26: map[ imap + 1 ] icellno( ix, iy, iz+1); 27: end for 28: end for 29: end for Algorithm 6 function icellno(ix, iy, iz): Return the Index of the Cell 1: int ix, iy, iz 2: int icellno : int M ( ) 4: icellno mod(ix + M, M) +mod(iy+m,m)*m + mod(iz + M, M) * M * M (mod(a, b) a b ) 5: return(icellno) imap imap+1 imap N cell =( 1)/2 =1 N cell map[ ] MD imap (Algorithm7) [ L/2, L/2] [0, 1] i icell icell i head[icell]( 0 ) list[i] i head[icell] CLL 18

22 .2 imap imap+1 imap+1. icell i head[icell] i i list[i].4 head list position2 head[2] = 8 8 list[8] = list -1 O(N)..4 1 head[ ] 2 list[ ] head[2] = list[8] = Algorithm8 Algorithm5 Algorithm8 Algorithm9 19

23 Algorithm 7 Link the Particle Index to the Cell Index 1: int icell, i, j 2: int M ( ) : double Systemsize ( ) 4: double cellsize ( ) 5: cellsize Systemsize / (double)m 6: if cellsize < rcut then 7: Error: Cell size is too small for cutoff radius. 8: end if 9: for i=0 to NumParticle do 10: dmyrxi rx[i] - floor( rx[i] + 0.5) 11: dmyryi ry[i] - floor( ry[i] + 0.5) 12: dmyrzi rz[i] - floor( rz[i] + 0.5) 1: icell (int)( ( dmyrxi ) / (double)m ) + (int)( ( dmyryi ) / (double)m ) * M +(int)((dmyrzi+0.5)/(double)m)*m*m 14: list[i] head[icell] 15: head[icell] i 16: end for.2 CLL O(N) ( 1, 000 ) VNL (a) (b) (c).5 : (a) 1 (f c =1,N cell = ) (b) 2 (f c =2,N cell =5 ) (c) (f c =,N cell =7 ) f c x, y, z N cell V ref V cutoff N cell 1 ( 1)/2 =1 2 (5 1)/2 =62 (7 1)/2 =

24 Algorithm 8 Use the cell linked List and calculate force 1: for icell=0 to Ncell do 2: ====== select i particle contain in each cells ====== : i head[icell] 4: while i >= 0do 5: ====== j particle contain in the current cell ====== 6: j list[i] 7: while j >= 0do 8: Caluculate r ij 9: if r ij <r cut then 10: Calculate force 11: end if 12: end while 1: j list[j] 14: ====== j particle contain in the neighbor cells ====== 15: jcell0 reference cell icell 16: for neighbor = 0 to reference cell do 17: jcell map[ jcell0 + neighbor ] 18: j head[ jcell ] 19: while j >= 0 do 20: Caluculate r ij 21: if r ij <r cut then 22: Calculate force 2: end if 24: j list[j] 25: end while 26: end for 27: i list[i] 28: end while 29: end for Algorithm 9 Cell Linked List 1: Create the map of the cell list. 2: ===== MD Loop Start ===== : for step = 0 to nstep do 4: move r(t) r(t+dt) and v(t) v(t+dt/2) 5: Link the particle index to the cell index. 6: Use the cell linked list and calculate force. 7: move v(t+dt/2) v(t+dt) 8: end for r cut ( V cutoff =4πr cut/ ) ( V ref = L cell ) L cell = r cut =2.5 V ref /V cutoff VNL VNL V ref =4πr list / r cut =2.5, r list = r cut VNL O(N 2 ) 21

25 Algorithm 10 Create the maps of the exclusive cell list (Cell Index) 1: int imap, mapsize, maps[mapsize], count 2: int M ( ) : int reference cell ( ), adjacent cell ( ) 4: refernce cell (2.0 adjacent cell+1) 1/2.0 5: =====Initialize the array of the map===== 6: for imap = 0 to mapsize do 7: map[imap] 0 8: end for 9: =====Create the array of the map===== 10: for iz=0 to M do 11: for iy=0 to M do 12: for ix=0 to M do 1: imap icell(ix, iy, iz) * reference cell 14: count 0 15: for jx= -adjacent cell to adjacent cell do 16: for jy= -adjacent cell to adjacent cell do 17: for jz= -adjacent cell to adjacent cell do 18: if jy > 0 then 19: count ++ 20: map[ imap + count] icell(ix + jx, iy + jy, iz + jz) 21: else if jy == 0 then 22: if jx >= 0 AND jx > 0 then 2: count ++ 24: map[ imap + count] icell(ix + jx, iy + jy, iz + jz) 25: else if jx >= 0 AND jz == 0 then 26: count ++ 27: map[ imap + count] icell(ix + jx, iy + jy, iz + jz) 28: else if jx == 0 AND jz < 0 then 29: count ++ 0: map[ imap + count] icell(ix + jx, iy + jy, iz + jz) 1: else 2:...nothing to do : end if 4: end if 5: end for 6: end for 7: end for 8: =====End of the adjacent cell loop===== 9: end for 40: end for 41: end for 42: =====End of the M loop===== L cell >r cut (f c = 1) (.1) r cut f c 1 >L cell > r cut f c (f c > 1) (.2) (.5) f c x, y, z f c =1 CLL (Exclusive cell linked list) [16,17]

26 .5(a) CLL 1 ( ) ( L cell ) r cut 2 2 r cut >L cell >r cut /2.5(b) L cell = L M M N =1, 000 ρ =0.8 T =1.0 r cut =2.5 L L cell /r cut [1.0772(M =4), 1.46(M =)] 1 (f c =1,.5(a)) L cell /r cut [0.478(M =9), (M =4)] 2 (f c =2,.5(b)) L cell /r cut [(M = 1), 0.478(M =9)] (f c =,.5(c)) M =4 L cell = L M = (.4) 4 M =5 L cell = L M = (.5) 5 CLL (f c =1) L cell r cut = (f c =2) 2 r cut >L cell r cut /2 2 (f c =2) 5 Algorithm10 (.). CLL, 5, 7 VNL 1. (Algorithm9) 2. (Algorithm7). (Algorithm8) 4. (Algorithm8) 5. (Algorithm8) 5 1,, 4, 5 2 2

27 1 1, 4, 5 1 T CLL = 1 2 (N cell +1) τ α (.6) ( ρl cell (N cell +1) 1 ) τ β πr cut + 4 N cell L cell τ γ [15] 1 2 τ α,τ β,τ γ 1 (.6) CLL 1 CLL (.6).6(a),(b) VNL LJ NVE 100,000.6(a) 2 L cell /r cut 0.478(9 ) (a) V ρ N L =(N/ρ) 1/ L cell (.6) 2 r cut =2.5 2 (b) r cut =4.5 (f c =) r cut =.5, (f c =2) r cut =1.5 1 (f c =1) (.6) r cut (.1) N =1, 000 ρ =0.8 L cell = L cell = L/M =10.772/ =.5906 r cut =4.5 r cut =

28 time [sec / N] time [sec / N] 10 1 ρ = 0.80 ρ = 0.60 ρ = L cell / r cut (a) r cut = 1.50 r cut = 2.50 r cut =.50 r cut = L cell / r cut (b).6 (.6) (a) (b) (SKIN) ( ) (a) 2 (b) r cut =1.5 (f c =) r cut =2.5 r cut =.5 2 (f c =2) r cut =4.5 1 (f c =1) 25

29 4 VNL-CLL 2 (Verlet Neighbor List: VNL ) (Cell Linked List: CLL ) VNL O(N 2 ) 10,000 n n r list (2.8) CLL ( ) CLL O(N) 10,000 (.6) VNL ( ) VNL O(N 2 ) CLL VNL-CLL 26

30 4.1 VNL-CLL VNL n n +1 (O(N 2 )) VNL CLL(O(N)) O(N) VNL VNL-CLL Algorithm11 Algorithm12, Algorithm1 4.1 VNL-CLL VNL CLL Verlet r list Algorithm 11 VNL-CLL 1: Create the map of the cell list. 2: Make the VNL and calculate force. : ===== MD loop start ===== 4: for step = 0 to nstep do 5: move r(t) r(t+dt) and v(t) v(t+dt/2) 6: Check update of the VNL. 7: if Need update of the VNL then 8: =====Make the VNL using CLL===== 9: Link the particle index to the cell index. 10: Use the CLL and make the VNL. 11: Calculate force. 12: else 1: =====Use the VNL===== 14: Use the verlet neighbor list and calculate force. 15: end if 16: move v(t+dt/2) v(t+dt) 17: end for 27

31 Algorithm 12 VNL-CLL: Make the VNL using CLL 1: for icell = 0 to Ncell do 2: =====select i particle contain in each cell===== : i head[icell] 4: while i >= 0 do 5: =====j particle contain in the current cell===== 6: j cell list[i] 7: while j >= 0 do 8: calculate r ij 9: if r ij <r list then 10: neighbor list[i][point[i]] j 11: point[i] ++ 12: if r ij <r cut then 1: calculate force 14: end if 15: end if 16: j cell list[j] 17: end while 18: =====j particle contain in the neighbor cell===== 19: jcell0 reference cell * icell 20: while neighbor = 1 to reference cell do 21: jcell map[ jcell0 + neighbor ] 22: j head[jcell] 2: while j >= 0 do 24: calculate r ij 25: if r ij <r list then 26: neighbor list[i][point[i]] j 27: point[i] ++ 28: if r ij <r cut then 29: calculate force 0: end if 1: end if 2: j cell list[j] : end while 4: end while 5: i cell list[i] 6: end while 7: end for 8: for i=0 to NumParticle do 9: end point[i] point[i] 40: end for 1 CLL 2 Verlet VNL CLL VNL (Algorithm12) VNL (Algorithm1) VNL-CLL CLL CLL VNL-CLL r cut VNL r list L cell L cell >r list (f c = 1) (4.1) r list f c 1 >L cell > r list f c (r list = r cut + SKIN) (f c > 1) (4.2) 28

32 Algorithm 1 VNL-CLL: Use the VNL 1: for i=0 to NumParticle do 2: j begin 0 : j end end point[i] - 1 4: if j begin <=j end then 5: for j nab =j begin to j end do 6: j neighbor list[i][jnab] 7: if j > -1 then 8: calculate r ij 9: if r ij <r cut then 10: calculate force 11: end if 12: end if 1: end for 14: end if 15: end for 4.2 VNL CLL VNL-CLL 1 1 f VNL CLL = 1 T CLL n +1 N (τ CLL/τ VNL )+ n n +1 = 1 n +1 T CLL N CLL (Vref /V VNL ref )+ n n +1 ( 1 4 N 1 1 N 1 ) πρ(r cut +SKIN) 1 ( ) 4 πρ(r cut +2n x ) 1 VNL CLL 1 CLL T CLL τ CLL, τ VNL 1 CLL VNL r list VNL CLL 2r list (4.) τ CLL = V ref CLL τ VNL Vref VNL = (2r list) 4πrlist 1.91 (4.4) / VNL-CLL T ρ N r cut SKIN 4.2(b) 4.2(a) (4.) SKIN L cell SKIN VNL SKIN SKIN CLL O(N 2 ) CLL 29

33 r cut + SKIN L cell / r cut (a) r cut + SKIN L cell / r cut (b) (4.) 4.2 (SKIN ). N =1, 000 T =1.0, ρ =0.5, r cut =2.5 1 r list = r cut +SKIN r list =.1, L cell /r cut =0.42(f c = )((a) ) r list =.15, L cell /r cut =0.42(f c = )((b) 4.) SKIN SKIN 0

34 (a) ( 4.) T =1.0 ρ =0.8 r cut =2.5 ( )N = 500, 1, 000, 10, 000, 100, SKIN N L box n +1 1 VNL-CLL CLL O(N 2 ) O(N) VNL VNL O(N 2 ) CLL CLL (b) ( 4.4) N =1, 000 ρ =0.8 r cut =2.5 T =0.2, 0.5, 1.0, SKIN n SKIN VNL SKIN VNL-CLL SKIN SKIN VNL-CLL (c) ( 4.5) N =1, 000 T =1.0 r cut =2.5 ρ =0., 0.5, 0.8, SKIN L box = V/ρ O(N 2 ) SKIN SKIN (d) ( 4.6) N =1, 000 T =1.0 ρ =0.8 r cut =1.5, 2.0, 2.5,.0 4 SKIN SKIN r cut 1

35 rcut + SKIN L cell / rcut rcut + SKIN L cell / rcut N = 500 N =1, 000 rcut + SKIN L cell / rcut rcut + SKIN L cell / rcut N =10, 000 N = 100, (4.) SKIN T =1.0 ρ =0.8 r cut = rcut + SKIN rcut + SKIN L cell / rcut L cell / rcut 5 T =0.2 T = rcut + SKIN rcut + SKIN L cell / rcut L cell / rcut 5 T =1.0 T = (4.) SKIN N =1, 000 ρ =0.8 r cut =2.5 2

36 rcut + SKIN rcut + SKIN L cell / rcut L cell / rcut 5 ρ =0. ρ = rcut + SKIN rcut + SKIN L cell / rcut L cell / rcut 5 ρ =0.8 ρ = (4.) SKIN N =1, 000 T =1.0 r cut =2.5 rcut + SKIN L cell / rcut rcut + SKIN L cell / rcut r cut =1.5 r cut =2.0 rcut + SKIN L cell / rcut rcut + SKIN L cell / rcut r cut =2.5 r cut = (4.) SKIN N =1, 000 T =1.0 ρ =0.8

37 5 LJ Verlet (Verlet Neighbor List: VNL ) (SKIN) (Cell Linked List: CLL ) (Exclusive CLL ) VNL CLL VNL-CLL ( N, T, ρ, r cut ) (SKIN) SKIN= 0.5 VNL SKIN VNL CLL SKIN= 0.5 VNL-CLL SKIN VNL-CLL 5.1 (N <1000) O(N 2 ) CLL SKIN VNL VNL O(N 2 ) CLL O(N) VNL CLL VNL-CLL SKIN CLL 2 VNL O(N) VNL-CLL VNL CLL ( ) [18 20] VNL-CLL CLL (Pairwise Cell List) [21] ( ) [22 26] GPU [27, 28] VNL-CLL 4

38 Performance [atom steps / sec 10 6 ] VNL-CLL SKIN opt VNL-CLL SKIN = 0.5 CLL VNL SKIN opt VNL SKIN = Number of Particle 5.1 ( ) VNL-CLL ( )SKIN=0.5 VNL-CLL ( )CLL ( ) VNL ( )SKIN=0.5 VNL 5

39 6

40 [1] (2000). [2] (2001) [] (200) [4] (1988) [5] HOW TO (2004). [6] J. P. Hansen, I. R. Mcdonald, Theory of Simple Liquids, Fourth Edition, Elsevier (201). [7] D. J. Evans, Gary. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Cambridge University Press (2008). [8] M. E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation, Oxford University Press (2010). [9] D. Frenkel, B. Smit, Understanding Molecular Simulation, Academic Press (2002). [10] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press (2009). [11] D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press (1995). [12] A. A. Chialvo and P. G. Debenedetti, On the use of the Verlet neighbor list in molecular dynamics, Computer Physics Communications 60 (1990) [1] A. A. Chialvo and P. G. Debenedetti, On the performance of an automated Verlet neighbor list alogritm for large systems on a vector processer, Computer Physics Communications 64 (1991) [14] A. A. Chialvo and P. G. Debenedetti, An automated Verlet neighbor list algorithm with a multiple time-step approach for the simulation of large systems, Computer Physics Communications 70 (1992) [15] G. Sutmann, V. Stegailov, Optimization of neighbor list techniques in liquid matter simulations, Journal of Molecular Liquids 125 (2006) [16] M. Isobe, Simple and efficient algorithm for large scale molecular dynamics simulation in hard disk sistem International Journal of Modern Physics C 10 (1999) [17] W. Mattson, B. M. Rice, Near-neighbor calculations using a modified cell-linked method, Computer Physics Communications 119 (1999) [18] OpenMP (2006) [19] C/C++ OpenMP (2009) 7

41 [20] (2010) [21] P. Gonnet, Pairwise Verlet Lists: Combining Cell Lists and Verlet Lists to Improve Memory Locality and Parallelism, Journal of Computational Chemistry (2012) [22] Z. Yao, J. S. Wang, G. R. Liu and M. Cheng, Improved neighbor list algorithm in molocular simulations using cell decomposition and data sorting method, Computer Physics Communications 161 (2004) [2] S. Meloni, M. Rosati, Efficient particle labeling in atomistic simulations, Journal of Computational Chemistry 126 (2007) [24] U. Welliing, G. Germano, Efficiency of linked cell algorithms, Computer Physics Communications 182 (2011) [25] H. Watanabe, M. Suzuki and N. Ito, Efficient Implementations of Molecular Dynamics Simulations for Lennard-Jones Systems, Progress of Theoretical Physics, 126 (2011) [26] H. Watanabe, M. Suzuki and N. Ito, Huge-scale Molecular Dynamics Simulation of Multibubble Nuclei, Computer Physics Communicaitons, 184 (201) [27] J. A. Anderson, C. D. Lorenz, A. Travesset, General purpose molecular dynamics simulations fully implemented on graphics processing units, Journal of Computational Physics, 227 (2008) [28] A. J. Proctor, C. A. Stevens and S. S. Cho, GPU-Optimized Hybrid Neighbor/Cell List Algorithm for Coarse-Grained MD simulations of Protein and RNA Folding and Assembly, Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine, (201)

EGunGPU

EGunGPU Super Computing in Accelerator simulations - Electron Gun simulation using GPGPU - K. Ohmi, KEK-Accel Accelerator Physics seminar 2009.11.19 Super computers in KEK HITACHI SR11000 POWER5 16 24GB 16 134GFlops,

More information

nosenote3.dvi

nosenote3.dvi i 1 1 2 5 3 Verlet 9 4 18 5 23 6 26 1 1 1 MD t N r 1 (t), r 2 (t),, r N (t) ṙ 1 (t), ṙ 2 (t),, ṙ N (t) MD a 1, a 2, a 3 r i (i =1,,n) 1 2 T =0K r i + m 1 a 1 + m 2 a 2 + m 3 a 3 (m 1,m 2,m 3 =0, ±1, ±2,,

More information

連載講座 : 高生産並列言語を使いこなす (5) 分子動力学シミュレーション 田浦健次朗 東京大学大学院情報理工学系研究科, 情報基盤センター 目次 1 問題の定義 17 2 逐次プログラム 分子 ( 粒子 ) セル 系の状態 ステップ 18

連載講座 : 高生産並列言語を使いこなす (5) 分子動力学シミュレーション 田浦健次朗 東京大学大学院情報理工学系研究科, 情報基盤センター 目次 1 問題の定義 17 2 逐次プログラム 分子 ( 粒子 ) セル 系の状態 ステップ 18 連載講座 : 高生産並列言語を使いこなす (5) 分子動力学シミュレーション 田浦健次朗 東京大学大学院情報理工学系研究科, 情報基盤センター 目次 1 問題の定義 17 2 逐次プログラム 17 2.1 分子 ( 粒子 ) 17 2.2 セル 17 2.3 系の状態 18 2.4 1ステップ 18 2.5 力の計算 19 2.6 速度と位置の更新 20 2.7 セル間の分子の移動 21 3 OpenMP

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

IPSJ SIG Technical Report Vol.2014-ARC-213 No.24 Vol.2014-HPC-147 No /12/10 GPU 1,a) 1,b) 1,c) 1,d) GPU GPU Structure Of Array Array Of

IPSJ SIG Technical Report Vol.2014-ARC-213 No.24 Vol.2014-HPC-147 No /12/10 GPU 1,a) 1,b) 1,c) 1,d) GPU GPU Structure Of Array Array Of GPU 1,a) 1,b) 1,c) 1,d) GPU 1 GPU Structure Of Array Array Of Structure 1. MPS(Moving Particle Semi-Implicit) [1] SPH(Smoothed Particle Hydrodynamics) [] DEM(Distinct Element Method)[] [] 1 Tokyo Institute

More information

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2 FFT 1 Fourier fast Fourier transform FFT FFT FFT 1 FFT FFT 2 Fourier 2.1 Fourier FFT Fourier discrete Fourier transform DFT DFT n 1 y k = j=0 x j ω jk n, 0 k n 1 (1) x j y k ω n = e 2πi/n i = 1 (1) n DFT

More information

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m .1 1nm (T = 73.15K, p = 101.35kP a (1atm( )), 1bar = 10 5 P a = 0.9863atm) 1 ( ).413968 10 3 m 3 1 37. 1/3 3.34.414 10 3 m 3 6.0 10 3 = 3.7 (109 ) 3 (nm) 3 10 6 = 3.7 10 1 (nm) 3 = (3.34nm) 3 ( P = nrt,

More information

A 99% MS-Free Presentation

A 99% MS-Free Presentation A 99% MS-Free Presentation 2 Galactic Dynamics (Binney & Tremaine 1987, 2008) Dynamics of Galaxies (Bertin 2000) Dynamical Evolution of Globular Clusters (Spitzer 1987) The Gravitational Million-Body Problem

More information

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in Emacs, {l06050,sasano}@sic.shibaura-it.ac.jp Eclipse Visual Studio Standard ML Haskell Emacs 1 Eclipse Visual Studio variable not found LR(1) let Emacs Emacs Emacs Java Emacs JDEE [3] JDEE Emacs Java 2

More information

0201

0201 2018 10 17 2019 9 19 SI J cal 1mL 1ºC 1999 cal nutrition facts label calories cal kcal 1 cal = 4.184 J heat capacity 1 K 1 J K 1 mol molar heat capacity J K mol (specific heat specific heat capacity) 1

More information

Nosé Hoover 1.2 ( 1) (a) (b) 1:

Nosé Hoover 1.2 ( 1) (a) (b) 1: 1 watanabe@cc.u-tokyo.ac.jp 1 1.1 Nosé Hoover 1. ( 1) (a) (b) 1: T ( f(p x, p y, p z ) exp p x + p y + p ) z (1) mk B T p x p y p = = z = 1 m m m k BT () k B T = 1.3 0.04 0.03 0.0 0.01 0-5 -4-3 - -1 0

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

コンピュータ概論

コンピュータ概論 4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For

More information

COGNACのコンセプト \(COarse Grained molecular dynamics program developed by NAgoya Cooperation\)

COGNACのコンセプト \(COarse Grained molecular dynamics program developed by NAgoya Cooperation\) COGNAC (COarse-Grained molecular dynamics program by NAgoya Cooperation) ( ), 0 sec -3 msec -6 sec -9 nsec -12 psec -15 fsec GOURMET SUSHI PASTA COGNAC MUFFIN -15-12 -9-6 -3 0 fm pm nm m mm m United atom

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 4 2010 9 3 3 4-1 Lucas-Kanade 4-2 Mean Shift 3 4-3 2 c 2013 1/(18) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 -- 4 4--1 2010 9 4--1--1 Optical Flow t t + δt 1 Motion Field

More information

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box White-Box Takayuki Kunihiro Graduate School of Pure and Applied Sciences, University of Tsukuba Hidenao Iwane ( ) / Fujitsu Laboratories Ltd. / National Institute of Informatics. Yumi Wada Graduate School

More information

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru 1. 1-1. 1-. 1-3.. MD -1. -. -3. MD 1 1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Structural relaxation

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h 土木学会論文集 B2( 海岸工学 ) Vol. 70, No. 2, 2014, I_016-I_020 非線形長波モデルと流体粒子法による津波シミュレータの開発 Development of a Tsunami Simulator Integrating the Smoothed-Particle Hydrodynamics Method and the Nonlinear Shallow Water

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C 3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C nn (r r ) = C nn (R(r r )) [2 ] 2 g(r, r ) ˆn(r) ˆn(r

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

Real AdaBoost HOG 2009 3 A Graduation Thesis of College of Engineering, Chubu University Efficient Reducing Method of HOG Features for Human Detection based on Real AdaBoost Chika Matsushima ITS Graphics

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4 Simpson H4 BioS. Simpson 3 3 0 x. β α (β α)3 (x α)(x β)dx = () * * x * * ɛ δ y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f()

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

( )

( ) 1. 2. 3. 4. 5. ( ) () http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) SDSS : d 2 r i dt 2 = Gm jr ij j i rij 3 = Newton 3 0.1% 19 20 20 2 ( ) 3 3

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

読めば必ずわかる 分散分析の基礎 第2版

読めば必ずわかる 分散分析の基礎 第2版 2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

ストリーミング SIMD 拡張命令2 (SSE2) を使用した、倍精度浮動小数点ベクトルの最大/最小要素とそのインデックスの検出

ストリーミング SIMD 拡張命令2 (SSE2) を使用した、倍精度浮動小数点ベクトルの最大/最小要素とそのインデックスの検出 SIMD 2(SSE2) / 2.0 2000 7 : 248602J-001 01/10/30 1 305-8603 115 Fax: 0120-47-8832 * Copyright Intel Corporation 1999-2001 01/10/30 2 1...5 2...5 2.1...5 2.1.1...5 2.1.2...8 3...9 3.1...9 3.2...9 4...9

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

,4) 1 P% P%P=2.5 5%!%! (1) = (2) l l Figure 1 A compilation flow of the proposing sampling based architecture simulation

,4) 1 P% P%P=2.5 5%!%! (1) = (2) l l Figure 1 A compilation flow of the proposing sampling based architecture simulation 1 1 1 1 SPEC CPU 2000 EQUAKE 1.6 50 500 A Parallelizing Compiler Cooperative Multicore Architecture Simulator with Changeover Mechanism of Simulation Modes GAKUHO TAGUCHI 1 YOUICHI ABE 1 KEIJI KIMURA 1

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai, 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] 1 599 8531 1 1 Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai, Osaka 599 8531, Japan 2 565 0871 Osaka University 1 1, Yamadaoka, Suita, Osaka

More information

18 2 20 W/C W/C W/C 4-4-1 0.05 1.0 1000 1. 1 1.1 1 1.2 3 2. 4 2.1 4 (1) 4 (2) 4 2.2 5 (1) 5 (2) 5 2.3 7 3. 8 3.1 8 3.2 ( ) 11 3.3 11 (1) 12 (2) 12 4. 14 4.1 14 4.2 14 (1) 15 (2) 16 (3) 17 4.3 17 5. 19

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

RIMS98R2.dvi

RIMS98R2.dvi RIMS Kokyuroku, vol.084, (999), 45 59. Euler Fourier Euler Fourier S = ( ) n f(n) = e in f(n) (.) I = 0 e ix f(x) dx (.2) Euler Fourier Fourier Euler Euler Fourier Euler Euler Fourier Fourier [5], [6]

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-HPC-139 No /5/29 Gfarm/Pwrake NICT NICT 10TB 100TB CPU I/O HPC I/O NICT Gf

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-HPC-139 No /5/29 Gfarm/Pwrake NICT NICT 10TB 100TB CPU I/O HPC I/O NICT Gf Gfarm/Pwrake NICT 1 1 1 1 2 2 3 4 5 5 5 6 NICT 10TB 100TB CPU I/O HPC I/O NICT Gfarm Gfarm Pwrake A Parallel Processing Technique on the NICT Science Cloud via Gfarm/Pwrake KEN T. MURATA 1 HIDENOBU WATANABE

More information

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1 Vol.52, No.6, 317/329 2016 Mathematical Model and Analysis on Human s Handwork and Their Application to Brush Motion and Junkatsu of Japanese Calligraphy Tadamichi Mawatari and Kensuke Tsuchiya There is

More information

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ 615-851 ryoichi@chemekyoto-uacjp 66-852 onuki@scphyskyoto-uacjp 1 T g T T fragile *2 1 11) 1 9) η T g T g /T *1 τ 198 τ η = Gτ G τ T c η τ 12) strong fragile T c strong η η exp(e/k B T ) 1 2/3 E SiO 2

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

メモリ階層構造を考慮した大規模グラフ処理の高速化

メモリ階層構造を考慮した大規模グラフ処理の高速化 , CREST ERATO 0.. (, CREST) ERATO / 8 Outline NETAL (NETwork Analysis Library) NUMA BFS raph500, reenraph500 Kronecker raph Level Synchronized parallel BFS Hybrid Algorithm for Parallel BFS NUMA Hybrid

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Information Science and Technology, Osaka University a) kawasumi.ryo@ist.osaka-u.ac.jp 1 1 Bucket R*-tree[5] [4] 2 3 4 5 6 2. 2.1 2.2 2.3

More information

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs 15 C11-4 Numerical analysis of flame propagation in a combustor of an aircraft gas turbine, 4-6-1 E-mail: tominaga@icebeer.iis.u-tokyo.ac.jp, 2-11-16 E-mail: ntani@iis.u-tokyo.ac.jp, 4-6-1 E-mail: itoh@icebeer.iis.u-tokyo.ac.jp,

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

( ) 1 1.1? ( ) ( ) ( ) 1.1(a) T m ( ) 1.1(a) T g ( ) T g T g 500 74% ( ) T K ( 1.1(b) 15 T g T g 10 13 T g T g T g [ ] A ( ) exp (1.1) T T 0 Vogel-Fulcher T 0 T 0 T K T K Ortho-Terphenil (OTP) SiO 2 (1.1)

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsushi UMEMURA, Yoshiharu KANESHIMA, Hiroki MURAKAMI(IHI

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw ,.,. NP,.,. 1 1.1.,.,,.,.,,,. 2. 1.1.1 (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., 152-8552 2-12-1, tatsukawa.m.aa@m.titech.ac.jp, 190-8562 10-3, mirai@ism.ac.jp

More information

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter ,a),2,3 3,4 CG 2 2 2 An Interpolation Method of Different Flow Fields using Polar Interpolation Syuhei Sato,a) Yoshinori Dobashi,2,3 Tsuyoshi Yamamoto Tomoyuki Nishita 3,4 Abstract: Recently, realistic

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

2017 p vs. TDGL 4 Metropolis Monte Carlo equation of continuity s( r, t) t + J( r, t) = 0 (79) J s flux (67) J (79) J( r, t) = k δf δs s( r,

2017 p vs. TDGL 4 Metropolis Monte Carlo equation of continuity s( r, t) t + J( r, t) = 0 (79) J s flux (67) J (79) J( r, t) = k δf δs s( r, 27 p. 47 7 7. vs. TDGL 4 Metropolis Monte Carlo equation of continuity s( r, t) t + J( r, t) = (79) J s flux (67) J (79) J( r, t) = k δf δs s( r, t) t = k δf δs (59) TDGL (8) (8) k s t = [ T s s 3 + ξ

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi 4 4 9............................................... 3.3......................... 4.4................. 5.5............................ 7 9..................... 9.............................3................................4..........................5.............................6...........................

More information

17 1 25 http://grape.astron.s.u-tokyo.ac.jp/pub/people/makino/kougi/stellar_dynamics/index.html http://grape.astron.s.u-tokyo.ac.jp/pub/people/makino/talks/index-j.html d 2 x i dt 2 = j i Gm j x j x i

More information