68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3

Similar documents

エジプト、アブ・シール南丘陵頂部・石造建造物のロータス柱の建造方法



. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

The Plasma Boundary of Magnetic Fusion Devices

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

eto-vol2.prepri.dvi

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef


PDF

‚æ27›ñ06-…|…X…^†[

"05/05/15“ƒ"P01-16

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2



02-量子力学の復習

J表紙.dpt

p1_5.pmd

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

2012専門分科会_new_4.pptx

122 丸山眞男文庫所蔵未発表資料.indd


š ( š ) (6) 11,310, (3) 34,146, (2) 3,284, (1) 1,583, (1) 6,924, (1) 1,549, (3) 15,2

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c


untitled

320_…X…e†Q“õ‹øfiÁ’F

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

…_…C…L…fi…J…o†[fiü“ePDF/−mflF™ƒ

WINS クラブ ニュース


4/15 No.

untitled

JIS Z803: (substitution method) 3 LCR LCR GPIB

ohpr.dvi

ï ñ ö ò ô ó õ ú ù n n ú ù ö ò ô ñ ó õ ï

<4D F736F F D2092B28DB882C982C282A282C42E646F63>

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1



I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

30

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

untitled

( š ) œ 525, , , , ,000 85, , ,810 70,294 4,542,050 18,804,052 () 178,710 1,385, , ,792 72,547 80,366

.w..01 (1-14)

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 *


2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Undulator.dvi

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63>

A 99% MS-Free Presentation

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

C:/KENAR/0p1.dvi

fm

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier


1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

chap1_MDpotentials.ppt

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

プラズマ核融合学会誌11月【81‐11】/小特集5

untitled


chap03.dvi

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

数学Ⅱ演習(足助・09夏)

ロシア語便覧 1

スケーリング理論とはなにか? - --尺度を変えて見えること--

官報(号外第196号)

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

量子情報科学−情報科学の物理限界への挑戦- 2018

sec13.dvi

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Mott散乱によるParity対称性の破れを検証

211 ‚æ2fiúŒÚ

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

腎不全-第22回.indd

1

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R


1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O


eto-vol1.dvi

š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

Transcription:

67 1 Landau Damping and RF Current Drive Kazuya UEHARA* 1 Abstract The current drive due to the rf travelling wave has been available to sustain the plasma current of tokamaks aiming the stational operation. Simple derivation of Landau damping and radio-frequency current drive is described on the standpoint of particle acceleration and deceleration by the rf potential, whereas the current drive is usually described by the quasi-linear theory. This picture is available to understand the physical picture of Landau damping and the current drive. This report starts from the original explanation of Landau damping and then describes the picture of the Landau damping due to the potential as well as the application to the current drive. Finally the new formation of the current drive theory is tried to given. Keywords: Landau damping, radio-frequency current drive, particle trapping, physical picture 1 10 60 1 On the oscillation of the electron plasma Institute of physical problem 1945 6 2 J. Phys. USSR 1946 2) 3 4) 1987 1 Japan Atomic Energy Agency

68 JAXA-RR-09-003 1. 1 1 2 r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3

2007/2008 69 g = f k (v, t = 0) ε v, e -i t Im ( ) - >- å g f 0 ε = k-iî k Ó k e -i k t-î k t k Î k kx<<1 p Î k. 4 N = ˇå -å f 0dv p = (e 2 N/e 0 m) 1/2 Dawson Jackson C-S Wu 5 7 f Ecos(kz- t) 5 t = 0 v = v 0 z = z 0 z = v 0 t+z 0 v 1 = (ee/mï[sin (kz 0 + Ït)-sin (kz 0 )] 6 Ï = kv 0 - z = z 0 + v 0 t + z 1 5 kz 1 << 1 cos(kz 1 )~1 sin(kz 1 )~kz 1 mv 2 /2 z 0 7 f t å Ë 8 df (v))/dv < 0 df (v))/dv > 0

70 JAXA-RR-09-003 8) Í = Í 0 cos (kz - t) /k = V z = z-vt dz /dt = v, dz/dt = v v = v-v Í = Í 0 coskz 2 Í = 0 v 0 9 v c = (2 eí/m) 1/2 (mv 2 )/2 = m (v 0 2 - v c 2 )/2 v 0 < v c Í(z ) v -v v Í 0 -(v-v)+v v = -2(v-V) = -2 v T T T = mv v = -2 mvv v v > V T v < V 2 z Í (z ) dt/dt = P N v f v /L -v c v c v 10 L s f V f(v + v ) = f(v) + v f (V) s 1 v 0 s 2 s = v 4 c f (V)/2 L = 2e 2 Í 2 0 f (V)/m 2 L W w W E = <E 2 z >/2ε 0 = ε 0 k 2 Í 2 0 /2 W T W T = p = (e 2 N/ε 0 m) 1/2 W W = W E + W T = ε 0 (kí 0 ) 2 T + W w = 0 dt/dt = -dw w /dt 11 dw w /dt = ÎW w Î V = /k Î = 2 mvns/ε 0 (kí 0 ) 2 = 4 e 2 Nf (V)/ε 0 mlk 3 kl = 8/Û 12

2007/2008 71 9) JFT 2 10 JT 60 3.25 MA 11) 3 6 32 TRIAM-1 M 12) Ecos(kz - t) 13 13) F F = m v/ t = -2mv v /L (mv)/ t N f P 14 = E eq = F/-e = 2mv v /el E eq J current = env = ˆE eq ˆ ˆ = e 2 N /m (= 1/v) 15 ˆ 14) 13 F N E 0 = kí 0 P F F = ee eff ˆ/e J current J current P

72 JAXA-RR-09-003 16. 3 F.F. Chen Introduction to plasma physics 15 energy momentum 1 z 0 17 t å Ë d(mv)/dt z0 = ee eff E eff 3 energy momentum 18 Ú ei mdv/dt = ee eff - mvú ei d/dt = 0 19 j = -eˇå vf(v)dv v -å 20 16, 17 1 D. D. Ryutov, Plasma Phys. Contr. Fusion 41 (1999) A 1 2 L. D. Landau, J. Phys., UUSR, 10 (1946) 25 3 L. D. Landau, Phys Z. Sowjet, 10 (1936) 154

2007/2008 73 4 2005 5 J. Dawson, Phys. Fluids, 4 (1961) 869 6 J. D. Jackson, Plasma Phys. 1 (1960) 71 7 Ching-Sheng Wu, Phys. Rev. 127 (1962) 1419 8 9 A. Sakharov, Memoirs (Knopf, New York, 1990) p. 139 10 T. Yamamoto et al., Phys. Rev. Lett. 45 (1980) 716 11 K. Uehara, JAERI-M 87-211 12 H. Zushi et al., Nucl Fusion 39 (1999) 2127 13 T. H. Stix, The Theory of Plasma Waves (McGraw-hill, New York, 1962) p. 155 14 ˆ v 3 ˆ = e 2 N /m - > v 3 /V 3 15 20 15) F. F. Chen, Introduction to Plasma Physics (Plenum Press, NewYork and London, 1974) p. 219 16) K. Uehara, Phys. Fluids B 3 (1991) 2601 17) J. H. Malmberg and C. B. Wharton Phys. Rev. Lett. 17 (1966) 175 & K. Yamagiwa et al., J. Phys. Soc. Jpn. 40 (1976) 1157