, ( ξ/) ξ(x), ( ξ/) x = x 1,. ξ ξ ( ξ, u) = 0. M LS ξ ξ (6) u,, u M LS 3).,.. ξ x ξ = ξ(x),, 1. J = (ξ ξ, V [ξ ] 1 (ξ ξ )) (7) ( ξ, u) = 0, = 1,..., N

Similar documents
(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

IPSJ SIG Technical Report Taubin Ellipse Fitting by Hyperaccurate Least Squares Yuuki Iwamoto, 1 Prasanna Rangarajan 2 and Kenichi Kanatani

Automatic Detection of Circular Objects by Ellipse Growing Mitsuo OKABE, Kenichi KANATANI, and Naoya OHTA 1. [4], [5], [18], [19] [14], [17] [28], [32

E = N M α= = [( pα I α x ) 2 ( α qα + y ) 2 ] α r α r α I α α p α = P X α + P 2 Y α + P 3 Z α + P 4, q α = P 2 X α + P 22 Y α + P 23 Z α + P 24 r α =

IPSJ SIG Technical Report Vol.2009-CVIM-168 No /9/ Latest Algorithm for 3-D Reconstruction from Two Views Kento Yamada, 1 Yasu

IPSJ SIG Technical Report Vol.2009-CVIM-168 No /8/ (2003) Costeira Kanade (1998) AIC Vidal (2005) GPCA Taubin 3 2 EM Multi-stage Opt

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

Microsoft PowerPoint - 資料04 重回帰分析.ppt

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

カイ二乗フィット検定、パラメータの誤差

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

統計的データ解析

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

IPSJ SIG Technical Report Vol.2015-CVIM-196 No /3/6 1,a) 1,b) 1,c) U,,,, The Camera Position Alignment on a Gimbal Head for Fixed Viewpoint Swi

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

光学

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

log F0 意識 しゃべり 葉の log F0 Fig. 1 1 An example of classification of substyles of rap. ' & 2. 4) m.o.v.e 5) motsu motsu (1) (2) (3) (4) (1) (2) mot

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

Fig. 2 Gaussian surfaces with different standard deviations

yoo_graduation_thesis.dvi

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

IPSJ SIG Technical Report Vol.2010-CVIM-172 No /5/ Object Tracking Based on Generative Appearance Model 1. ( 1 ) ( 2 ) ( 3 ) 1 3) T

Vol.-CVIM-7 No.7 /3/8 NLPCA kernel PCA KPCA 4),) NLPCA KPCA NLPCA KPCA principle curve principle surface KPCA ) ),),6),8),),3) ) Jacobian KPCA PCA ) P

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

川崎医会誌一般教, 32 号 : (2006) 39 非心ベキ正規分布のパラメータの推定 川崎医科大学 教材教具センター *, 情報科学教室 ** 格和勝利 * 近藤芳朗 ** ( 平成 18 年 11 月 208 受理 ) On Estimation of Parameters in

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

特集_03-07.Q3C

28 Horizontal angle correction using straight line detection in an equirectangular image

dvi

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

IPSJ SIG Technical Report An Evaluation Method for the Degree of Strain of an Action Scene Mao Kuroda, 1 Takeshi Takai 1 and Takashi Matsuyama 1

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

Vol.-ICS-6 No.3 /3/8 Input.8.6 y.4 Fig....5 receptive field x 3 w x y Machband w(x =

JFE.dvi

1,a) 1,b) TUBSTAP TUBSTAP Offering New Benchmark Maps for Turn Based Strategy Game Tomihiro Kimura 1,a) Kokolo Ikeda 1,b) Abstract: Tsume-shogi and Ts

2. ICA ICA () (Blind Source Separation BBS) 2) Fig. 1 Model of Optical Topography. ( ) ICA 2.2 ICA ICA 3) n 1 1 x 1 (t) 2 x 2 (t) n x(t) 1 x(t

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

1214_KiyotaCalib_matsusita_fixed2.pdf

IPSJ SIG Technical Report Vol.2012-IS-119 No /3/ Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function

知能と情報, Vol.30, No.5, pp

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 1 bundle 10) A 90 Bundle Adjustment TAKAYUKI OKATANI 1 Bundle adjustment is a general meth

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

28 TCG SURF Card recognition using SURF in TCG play video

untitled

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

DVIOUT

P.5 P.6 P.3 P.4 P.7 P.8 P.9 P.11 P.19

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =


Microsoft PowerPoint - H17-5時限(パターン認識).ppt

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

STSNJ NL

PowerPoint プレゼンテーション

ICT Web Web ICT Web 2. 新 学 習 指 導 要 領 の 理 念 と 教 育 の 情 報 化 の 意 義 2-1 新 学 習 指 導 要 領 の 理 念 ICT 2

,,,,,,,,,,,,,,,,,,, 976%, i

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

IPSJ SIG Technical Report Vol.2014-DPS-158 No.27 Vol.2014-CSEC-64 No /3/6 1,a) 2,b) 3,c) 1,d) 3 Cappelli Bazen Cappelli Bazen Cappelli 1.,,.,.,

29 jjencode JavaScript

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

2 3

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

The 15th Game Programming Workshop 2010 Magic Bitboard Magic Bitboard Bitboard Magic Bitboard Bitboard Magic Bitboard Magic Bitboard Magic Bitbo

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

[3] M.C. Escher Escher 1 Escher Escherization Problem [5] Escherization Problem S ( 1 ) T S ( 2 ) T T [5] Escherization Problem isohedral isohe

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

ブック

2.2 6).,.,.,. Yang, 7).,,.,,. 2.3 SIFT SIFT (Scale-Invariant Feature Transform) 8).,. SIFT,,. SIFT, Mean-Shift 9)., SIFT,., SIFT,. 3.,.,,,,,.,,,., 1,

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

数値計算法

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

ユニセフ表紙_CS6_三.indd

IPSJ SIG Technical Report Vol.2013-CVIM-188 No /9/2 1,a) D. Marr D. Marr 1. (feature-based) (area-based) (Dense Stereo Vision) van der Ma

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

スライド 1

Iteration 0 Iteration 1 1 Iteration 2 Iteration 3 N N N! N 1 MOPT(Merge Optimization) 3) MOPT MOP

it-ken_open.key

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

waseda2010a-jukaiki1-main.dvi

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki


1 (PCA) 3 2 P.Viola 2) Viola AdaBoost 1 Viola OpenCV 3) Web OpenCV T.L.Berg PCA kpca LDA k-means 4) Berg 95% Berg Web k-means k-means

IPSJ-CVIM

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/7 1,a) 2,3 2,3 3 Development of the ethological recording application for the understanding of

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. UWB UWB

Transcription:

1,,.,.. Maximum Likelihood Estimation for Geometric Fitting Yasuyuki Sugaya 1 Geometric fitting, the problem which estimates a geometric model of a scene from extracted image data, is one of the most fundamental problems of computer vision. Bundle adjustment and maxium likelihood estimation are well used for geometric fitting. In this paper, we present a maximum likelihood estimation to the data which are constrained linear in the model parameters. We describe the geometric meanings of maximum likelihood and its reliability evaluation. We also show geometric fitting examples. 1.,.,,, 1 Department of Information and Computer Sciences, Toyohasi University of Technology.,., 8). 2. x, = 1,..., N u. F (x; u) = 0 (1) F (x ; u) 0, = 1,..., N (2) u., 2,. (1) F (x; u) x, u,. (1). (ξ(x), u) = 0 (3), a, b (a, b). ξ(x) ξ i(x) (1) u i x. (1) x, 1, 1 u., (3) u., u., u = 1.,. (3) (2), u. 3. (ξ(x ), u) 0, = 1,..., N () () u,. N (ξ, u) 2 = (u, ξ ξ u) = (u, M LS u) (5) 1

, ( ξ/) ξ(x), ( ξ/) x = x 1,. ξ ξ ( ξ, u) = 0. M LS ξ ξ (6) u,, u M LS 3).,.. ξ x ξ = ξ(x),, 1. J = (ξ ξ, V [ξ ] 1 (ξ ξ )) (7) ( ξ, u) = 0, = 1,..., N (8) ξ, u., ξ ξ. x x 0, V [x ], ξ = ξ(x ) V [ξ ]. ( ) ( ξ ξ V [ξ ] = V [x ] (9). (9) ξ, x x x, x 2 ξ.. ξ M, ξ M N, (u, ξ) = 0.,, 1. (8) ξ,,. ξ ξ = ξ ξ (10), ξ., (7). J = ( ξ, V [ξ ] 1 ξ ) (11) (8). (ξ ξ, u) = 0 (12) (8), λ, ( ξ, V [ξ ] 1 ξ ) λ ((ξ ξ, u)) (13), ξ 0,. (1),. 2V [ξ ] 1 ξ λ u = 0 (1) ξ = λ 2 V [ξ ]u (15) (12), λ. λ = 2(u, ξ ) (u, V [ξ ]u) (16) 1 ξ, (9) V [ξ ]. (7) V [ξ ] 1. 2

(15) (11),. J = 1 λ 2 (V [ξ ]u, V [ξ ] 1 V [ξ ]u) = 1 λ 2 (u, V [ξ ]u) (16), u. (u, ξ J = ) 2 (u, V [ξ ]u) 5. (17) (18) ( x, y ) 2 6.,,,. (18), Chojnacki 2) FNS, Leedan 7) HEIV, 9). Chojnacki FNS. (18) u,. uj = = 2(u, ξ )ξ (u, V [ξ ]u) 2ξ (ξ u) (u, V [ξ ]u) = 2(M L)u,. ξ M ξ (u, V [ξ ]u), L 2(u, ξ )V [ξ ]u (u, V [ξ ]u) 2 2(u, ξ )V [ξ ]u (u, V [ξ ]u) 2 (19) (u, ξ )V [ξ ] (u, V [ξ ]u) 2 (20) (18) (19) 0 u., u, u = 1. Chojnacki FNS. ( 1 ) u. ( 2 ), λ u. Xu = λu, X M L (21) ( 3 ) u u u., u u 2. 1 : (x, y ), = 1,..., N 2. ξ(x, y), u 1, (22), (3). Ax + By + Cf 0 = 0 (22) ξ(x, y) = (x y f 0, u = (A B C (23) x, y, = 1,..., N 0, σ, x = (x y f 0 V [x ], ( ξ/), V [x ] = σ 2 0 0 0 σ 2 0, ( ) ξ = 0 0 0 ξ,. 1 0 0 V [ξ ] = σ 2 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 (2) σ 2 V 0 [ξ ] (25), V 0 [ξ ]. (18) σ 2 1 f 0.,,. 3

3 ( x, y ),, (20) V [ξ ] V 0[ξ ]. 2 : (x, y ), = 1,..., N Ax 2 + 2Bxy + Cy 2 + 2(Dx + Ey)f 0 + F f 2 0 = 0 (26) 3. ξ(x, y), u ξ(x, y) = (x 2 2xy y 2 2xf 0 2yf 0 f 2 0, u = (A B C D E F (27), (26), (3). x, y, = 1,..., N 0, σ, ( ξ/), ( ) 2x 2y 0 2f 0 0 0 ξ = 0 2x 2y 0 2f 0 0 0 0 0 0 0 0 ξ,. x 2 x y 0 x 0 0 x y x 2 + y 2 x y y x 0 V [ξ ] = σ 2 0 x y y 2 0 y 0 x y 0 f0 2 0 0 σ 2 V 0 [ξ ] (29) 0 x y 0 f0 2 0 0 0 0 0 0 0 3 : 2, 1 (x, y) 2 (x, y ), (28). ( x y f 0, F x y f 0 ) = 0 (30) F 2,. 2 N (x, y ), (x, y ), = 1,..., N. ξ(x, y), u ξ(x, y, x, y ) = (xx xy xf 0 yx yy yf 0 f 0 x f 0 y f 2 0, u = (F 11 F 12 F 13 F 21 F 22 F 23 F 31 F 32 F 33 (31), (30), (3). (x, y ), (x, y ), = 1,..., N x y 0, σ, ( ξ/), x y f 0 0 0 0 0 0 0 ( ) ξ 0 0 0 x y f 0 0 0 0 = x 0 0 y 0 0 f 0 0 0 ξ,. 0 x 0 0 y 0 0 f 0 0 V [ξ ] = σ 2 x 2 + x 2 x y f 0 x x y 0 0 f 0 x 0 0 x y x 2 + y 2 f 0 y 0 x y 0 0 f 0 x 0 f 0x f 0y f0 2 0 0 0 0 0 0 x y 0 0 y 2 + x 2 x y f 0 x f 0 y 0 0 0 x y 0 x y y 2 + y 2 f 0 y 0 f 0 y 0 0 0 0 f 0 x f 0 y f0 2 0 0 0 f 0x 0 0 f 0y 0 0 f0 2 0 0 0 f 0 x 0 0 f 0 y 0 0 f0 2 0 σ 2 V 0[ξ ] 0 0 0 0 0 0 0 0 0 (32) (33)

7. x ( x, y ) ( x, y ) ξ,., (x, y )., ξ., x x 0, V [x ], x., (ξ( x ), u) = 0 (3), E = (x x, V [x ] 1 (x x )) (35) x, u. x x = x x (36), x., (35). E = ( x, V [x ] 1 x ) (37) (3). (ξ(x x ), u) = 0 (38) ξ = ξ(x ), ξ(x x ) = ξ ( ξ/) x +, 1 x 2,. ( ) ξ ( x, u) = (ξ, u) (39) (9), ( ξ/) ξ(x) x = x. (38), λ, ( ) ) ( x, V [x ] 1 ξ x ) λ (( x, u) (ξ, u) ( ) = ( x, V [x ] 1 ξ ) (0) x ) λ (( x,, u) (ξ, u), x 0,. 2V [x ] 1 x λ ( ξ u = 0 (1) (1),. x = λ ( ) ξ 2 V [x ] u (39). (2) ( ) ( ) λ ξ ξ 2 ( V [x ] u, u) = (ξ, u) (3) (9), λ. λ = 2(u, ξ ) (u, V [ξ ]u) (2) (37),. E = 1 ( ) λ 2 ξ ( ξ (V [x ] u, = 1 ( ) ( λ 2 ξ ξ (u, V [x ] = λ 2 (u, V [ξ ]u) (), u. (u, ξ E = ) 2 (u, V [ξ ]u) u) u) (18)., x 1 ξ., FNS () (5) (6) 5

u. û, (36), (2), () x 1 ˆx. ˆx = x (u, ξ )V [x ] (u, V [ξ ]u) ( ξ u (7) (7) 1,, ). u O u u^ u 8. 5,.,. u, ū., u u ū 5. u u ū,. u = u (u, ū)u = P u u, P u I ūū (8) P u.,. V [u] = E[ u u ] = E[(P u u)(p u u ] (9), E[ ] u. (3) D = trv [u] = E[ u 2 ] = E[ P u u 2 ] (50) RMS,., u,, V [u],. ξ 0, V [ξ ], u 15),6). V [u] M 1, M N ξ ξ (ū, V [ ξ ]ū),. Chernov 1) (51) 1 KCR(Kantani-Cramer-Rao). u σ 0 u ū, O(σ ) (51). (50), K. D = 1 K P uu K (a) 2 (52) a=1, u (a) a., KCR RMS, RMS M 1. 9.,,,,. (51) 1 ξ, (37). M. 6

0.00 0.9 0.003 0.002 0.5 0.001 (a) 0 1 2 3 5 σ (b) (a) 0 1 2 3 σ (b) 6 (c), (a), (b) RMS, :FNS, :, :KCR, (c) σ = 1, (d) σ = 5. : 3x + 6y f 0 = 0, f 0 = 600.0 N, ( x, ȳ ), = 1,..., N 0, σ (x, y ), RMS KCR. N = 30, 6(a). 0, σ = 0,..., 5, 0.1, FNS. σ 1000, RMS 6(b). FNS RMS, RMS, KCR. 6(c), (d) σ = 1, 5 FNS., FNS., u = 1, (6) (18) 10). 5 : (0, 0), 200, 100 (d) 7 (c), (a), (b) RMS, :FNS, :, :KCR, (c) σ = 1, (d) σ = 3. N, ( x, ȳ ), = 1,..., N 0, σ (x, y ), RMS KCR. N = 10, 7(a). 0, σ = 0,..., 3, 0.1, FNS. σ 1000, RMS 7(b). FNS RMS, RMS, KCR. 7(c), (d) σ = 1, 3 FNS. RMS,, FNS (d) 7

情報処理学会研究報告 0. 0.3 0.2 0.1 0 (a) 1 2 3 σ 5 (b) (a) 図 8 直線当てはめの精度評価, (a) シミュレーションデータ, (b) RMS 誤差, 実線:FNS 法, 破線:最小二乗法, 点 線:KCR 下界 図 9 直線当てはめの精度評価, (a) シミュレーションデータ, (b) RMS 誤差, 実線:FNS 法, 破線:最小二乗法, 点 線:KCR 下界 とがわかる. また, 得られた解による楕円の描画結果を見ると, FNS 法の方が真の楕円に近 参 い楕円が得られていることがわかる. 0 ), = 1,..., N 例 6 基礎行列の精度評価: 異なる 2 画像間の N 組の対応点 (x, y ), (x 0, y に期待値 0, 標準偏差 σ の正規分布に従うノイズを付加したデータ (x, y ), 0 (x0, y ) (b) 考 文 献 1) Chernov, N. and Lesort, C.: Statistical efficiency of vurve fitting algrithms, Comput. Stat. Data Anal., 7-, pp.713 728 (200). 2) Chojnacki, M., Brooks, M. J., van den Hengel, A. and Gawley, D.: On the fitting on surfaces to data with covariances, IEEE Trans. Patt. Anal. Mach. Intell., Vol.22, No.11, pp.129 1303 (2000). 3) 金谷健一: これならわかる最適化数学 基礎原理から計算方法まで, 共立出版 (2005). ) 金谷健一, 菅谷保之: 幾何学的当てはめの厳密な最尤推定の統一的計算法, 情報処理学 会論文誌, コンピュータビジョンとイメージメディア, Vol.2, No.1, pp.53 62 (2009). 5) Kanatani, K.: Statisitical Optimization for Geometric Computation: Theory and Practice, Elsevier Science, Amsterdam, The Netherlands (1996); Dover, New York (2005). 6) 金谷健一: 最尤推定の最適性と KCR 下界, 情報処理学会研究報告, 2005-CVIM-156-18, pp.59 6 (2005). 7) Leedan, Y. and Meer, P.: Heteroscedastic regression in computrer vision: Problems with bilinear constraint, Int. J. Comput Vision, Vol.37, No.2, pp.127 150 (2000). 8) 岡谷貴之: バンドルアジャストメント, 情報処理学会研究報告, 2009-CVIM-167-37, pp.1 16 (2009). 9) 菅谷保之, 金谷健一: 基礎行列の高精度計算法とその性能比較, 情報処理学会研究報告, 2006-CVIM-153-22, pp.207 21 (2006). 10) 菅谷保之, 金谷健一: 画像の三次元理解のための最適化計算 [I] 直線当てはめ, 情報 処理学会誌, Vol.92, No.3, pp.229 233(2009). 11) 山田健人, 金澤 靖, 金谷健一, 菅谷保之: 2 画像からの 3 次元復元の最新アルゴリズ ム, 情報処理学会研究報告, 2009-CVIM-168-15, (2009). から 最尤推定によって基礎行列を計算し, その RMS 誤差と KCR 下界を比較する. 図 8(a) のシミュレーションデータに対して, 期待値 0, 標準偏差 σ = 0,..., 5, 刻み幅 0.1 の正規分布に従うノイズを付加し, FNS 法を用いて基礎行列を計算する. 各 σ に対して異な るノイズを付加して 1000 回の試行を行い, RMS 誤差を計算した結果が図 8(b) である. 実 線が FNS 法の RMS 誤差, 破線が最小二乗法の RMS 誤差, 点線が KCR 下界である. 最小 二乗法では, ノイズの増加に従って精度が低下するが, FNS 法では KCR 下界にほぼ一致す るような高精度な解が得られている. 図 9 は実画像から手動で 100 点の特徴点を抽出して, FNS 法により基礎行列をして, 山田 ら11) らの方法で 3 次元復元を行った結果である. 10. お わ り に 本稿では幾何学的当てはめの最尤推定法について解説した. コンピュータビジョンの分野 でよく現れる幾何学的当てはめの問題は, データとモデルパラメータが線形拘束条件で表さ れる場合が多く, 本稿ではこの場合についてのみ取り扱った. 本稿の内容は歴史的背景など には触れずに, 実際の問題ですぐに活用できることを目的として, 最尤推定法の具体的な計 算方法や推定値の信頼性評価について述べた. また, これらについて直線当てはめや楕円当 てはめなどの具体例を示した. 8 c 2009 Information Processing Society of Japan