From Evans Application Notes

Similar documents
(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

( ) ,

Mott散乱によるParity対称性の破れを検証

Microsoft Word - 章末問題

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

Note.tex 2008/09/19( )

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

LLG-R8.Nisus.pdf

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

PDF

Dynamic SIMS Static SIMS µ µ

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π


64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

untitled

untitled

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

Undulator.dvi

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d


pdf

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

untitled

09_organal2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

QMI_10.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

The Physics of Atmospheres CAPTER :

i

TOP URL 1

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

I

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

36 th IChO : - 3 ( ) , G O O D L U C K final 1

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

QMII_10.dvi

NETES No.CG V

0.1 I I : 0.2 I

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

SO(2)


基礎数学I

数学の基礎訓練I

Part () () Γ Part ,

untitled

08-Note2-web

修士論文

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Drift Chamber

c 2009 i

CoPt 17

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

untitled

85 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]


30

1).1-5) - 9 -

日本内科学会雑誌第102巻第4号

keisoku01.dvi

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

meiji_resume_1.PDF


Z: Q: R: C:

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

chap1.dvi

『共形場理論』

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

all.dvi

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

I ( ) 2019


15

all.dvi

TOP URL 1

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

本文/目次(裏白)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt



Transcription:

3

From Evans Application Notes http://www.eaglabs.com

From Evans Application Notes http://www.eaglabs.com

XPS AES ISS SSIMS ATR-IR 1-10keV µ

1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2 π µ 2 2 2 2 OSC E = E E = hν vib n+ 1 n OSC k > k > k C C C= C C C

ATR-IR DRS or DRIFT ERS or RAS PAS

n 1 ATR θ n 2 R R = = θ φ 2 sin ( ) 2 sin ( θ + φ) θ φ 2 tan ( ) 2 tan ( θ + φ) p-

2 (ATR-IR) θ Depth/µm 5 4 3 2 1 1 2 3 4 5 0 4000 3500 KRS-5 45 Ge 30 Ge 45 Ge 60 Si 45 3000 2500 n=2.35 n=4.0 n=3.42 2000 n 2 =1.5 1500 Wavenumber/cm -1 1 2 1000 5 3 4 500 λ d = ( n sin θ n ) p 2π 2 2 2 1/2 1 2

n ATR KRS-5 (a) =45 (b) =60

ATR-IR LB (T.Ohinishi et al.,j.phys.chem.,82, 1990(1978).) 1200cm -1

PE A.Ishitani et al., Nucl. Inst. Methods Phys. Res., B39, 783(1989).

ν (C-O-C) Absorbance ν (C=O) ν (NH) ν (NCO) 3600 3200 2800 2400 2000 1600 wavenumber(cm -1 ) 1200 800

PDMS 2.5nm thick PET (b) (a) PDMS(2.5nm) on PET (b) PET (c) (a)-(b) 6nm Ag film Y. Nishikawa et al., Appl. Spectrosc., 45, 752(1991).

ATR-IR Monolayer Flow cell to Detector IR in Silicon IRE Si HO O O Si HO Si OH O OH O Si O O Si OH OH HO H H HO H H O O H HO HO Si Si Si Si Si Silicon wafer Si OH O OH Si Si OH O Si O O H HO O H Si Si Absorbance 0.03 0.02 0.01 0 IRE -0.01 4000 3500 3000 2500 2000 1500 Wavenumber(cm -1 ) 1000 500

Adsorbance at 1550 cm -1 A Start of First Rinse Start of Second Rinse B Start of Second E Protein Flow Ab C D F A 0 =Aa+Ab Amount of Equilibrium Protein Adsorption Start of First Protein Flow Time Γ / µg.cm -2 0.5 0.4 0.3 0.2 1 2 3 OTS OTS/FOETS FOETS 0.1 2 0 0 5 10 15 20 25 30 35 Time / minutes 3 1 BSA 48 J. Biomater. Sci.. Polym. Ed., Vol.9, 131 (1998)

3) (Reflection Absorption Spectroscopy:RAS) d R 0 θ R vacuum ε 1 (n 1 ) adsorbate ε 2 (n 2 ) R S = n cos θ 2 + k 2 n + cos θ 2 + k 2 R P = n sec θ 2 + k 2 n+ sec θ 2 + k 2 metal ε 3 (n 3 ) R S R S = 8πd λ cos θ I m ε 2 ε 3 1 ε 3 R P R P = 8πd λ cos θ I m ε 2 ε 3 1 1/ε 2 ε 3 ε 2 + ε 3 sin 1 ε 3 1 1/ε 3 1+ε 3 sin 2 θ 2 θ R P R P = 8πdsin2 θ λ cos θ I m 1 ε 2

R R I = αd I 0 4n sin θ α d θ 3 2 1 = 3 0 n2cos R: R 0 : 4sin 2 : 1/cos : RAS 1) 2) 3) 85-88

LB (TAS) (RAS) Cd LB TAS RAS

A sin φ A m φ+ m φ 2 T = 2 2 2 cos sin R z x 1. CH 2 2. CH 2 A: φ 3. 2 2 2 m z,x cos α+ cos β+ cos θ= 1 (m x m z 1/100 25-35 8 5

P(VDF-co-TrFE) film on Au J. Vac. Sci. Technol. B, 121(1998)

(Diffuse Reflectance Spectroscopy:DRS) I: R: D: r r (sample) = r (standard) 2 (1 r ) K f( r ) = = 2r S (a) DRS, (b) KB TAS) r : K: (I=I 0 exp(-kl)) S:

Application of Diffuse Reflectance Spectroscopy(DRS) PAA Na-PA ν=ν as ν s Unidentate Bidentate Bridging PAA/Al 2 O 3 ν(unidentate)> ν(ionic) ν(bridging) > ν(bidentate) K. Vermohlen et al., Coll. Surf. A, 170, 181 (2000)

5) (Photoacoustic Spectroscopy) 1. 2. 3. 4. µm PA PAS

(PAS) (a) PS (b) PS (c) PS

Polymer 43, 4055 (2002). PAS

PAS - 1045, 1170 cm -1 Symmetric and antisymmetric SO 3 - stretching mode 1412 cm -1 Symmetric COO - stretching mode µ 400Hz 1/2 2α 1045, 1170 cm -1 µ = SO 3- stretching mode ω 730 CH 2 -rocking 1472 M. G. Sowa et al., J. Mol. Struct., 379, 77(1996). CH 2 -bending

XPS) 1) ν 2p L2,3 2s L1 KLL 2p 2s 1s K 1s h X (MgK AlK E k E b E = hν E φ C 1s C b Electron Spectroscopy for Chemical Analysis(ESCA) k

XPS

C=O (B. D. Ratner and D. Castner)

2 XPS 10-9 torr (1torr=133Pa)

XPS X

λ = 3) XPS Inelastic Mean Free Path(IMFP) Tanuma-Powell-Penn(TTP-2M E 10-2000eV Nv M E g E p ρ E λ= 2 2 E ( βln( γe) C/E+ D/E ) C = 1.97 0.91U IMFP 0.3-3nm D = 53.4 20.8U 100eV 2 U = N Vρ / M = E P / 829.4 S. Tanuma et al. Surf. Interface Anal., 21, 165(1994). P β= 0.10 + 0.944(E + E ) + 0.069ρ γ= 0.191ρ 0.5 2 2 1/2 0.19 P g

4) XPS

α θ θ = i i dn i( ) L i( ) i Re xp( )dz sin θ λi sin θ θ α σ ns β 3 α = + α 2 2 z i 2 L( i ) ki[1 0 ( sin 1)] t N it ( θ ) = L i( α)niσλ i isir[1 exp( )] λ sin θ i

C=O C-O O O O O CH 2 CH 2 -C-O- C=O (PET) C 1s

nm d 0 X-ray Analyzer e θ =90 deg. X-ray d=d sin 0 θ e θ Analyzer Analytical depth/nm 12 10 8 6 4 2 3λ=10nm d = 3λsinθ 0 0 20 40 60 80 θ/deg

90-90- I 1

LB CF 3 (CF 2 ) 7 CH 2 CH 2 COOCH 2 CH 2 CF 3 (CF 2 ) 7 CH 2 CH 2 COOCH 2 CH 2 = O N C CH 2 N CH 3 + CH 3 CH 3 Cl - F 2C C -de-c N + 8 2 2 Cl - FC Macromolecules, Vol.21, 2443 (1988).

X 1. X 2. 3. AlK 10kV,20mA C 1. 2.

7) F 1) 100% 2)

8)

9) Rept. Progr. Polym. Phys. Jpn., Vol.28, 275 (1985).

PEG Polym. Bull. Vol.24, 333 (1990).

PVME PS PVME PS/PVME(50/50) θ 90deg. C TCE toluene -C-C*-C- -C*-Oπ π 295 290 285 Binding energy / ev 280

XPS PTMO(1000)BDO in Water N 1s x10 C 1s -C-C-C- -C-O-C- -C=O in Air x10 404 402 400 398 290 288 286 284 282 280 Binding energy / ev J. Biomater. Sci., Polym. Ed.,Vol.5, 183 (1993).