1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)

Similar documents
[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

H.Haken Synergetics 2nd (1978)

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

抄録/抄録1    (1)V

i Γ


第90回日本感染症学会学術講演会抄録(I)

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

Ł\”ƒ-2005

( ) I( ) TA: ( M2)

chap9.dvi

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

meiji_resume_1.PDF

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

all.dvi

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

スケーリング理論とはなにか? - --尺度を変えて見えること--

TOP URL 1

master.dvi

References: 3 June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima,

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

30

di-problem.dvi

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

Grushin 2MA16039T

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

sikepuri.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

CVMに基づくNi-Al合金の

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

( )

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

(Onsager )

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

,,..,. 1

chap10.dvi

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1


chap03.dvi

201711grade1ouyou.pdf

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

(1) (2) (3) (4) 1

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

6 19,,,

II 2 II

all.dvi

Untitled




微粒子合成化学・講義

微粒子合成化学・講義

³ÎΨÏÀ

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K


日本内科学会雑誌第98巻第4号

tnbp59-21_Web:P2/ky132379509610002944

LLG-R8.Nisus.pdf

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

( ) URL: December 2, 2003


パーキンソン病治療ガイドライン2002

日本内科学会雑誌第97巻第7号

i 18 2H 2 + O 2 2H 2 + ( ) 3K

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

SO(2)

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

2,200 WEB * Ξ ( ) η ( ) DC 1.5 i

研修コーナー

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google



VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

limit&derivative

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

II 1 II 2012 II Gauss-Bonnet II

b3e2003.dvi


1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n

untitled

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

03実習2・松井.pptx

Z: Q: R: C: 3. Green Cauchy

Transcription:

19 1 14 007 3 1 1 Ising 4.1................................. 4................................... 5 3 9 3.1........................ 9 3................... 9 3.3........................ 11 4 14 4.1 Legendre.............................. 14 4. Landau.......................... 14 1

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k) k=1 1 f e βf =Tr s e βh(s) N f N e βf N =Z N f N N = f = f N 1 N N N:( ) P.W.Anderson More is different (P.W.Anderson)

z B N 1 e βf = H 0 =µbs z, S z = ± 1 S z =± 1 e βµbsz f = 1 β log ( cosh βµb N N H N =µb Sk, z Sk z = ± 1 k=1 e βf N = S z 1 =± 1 f N N f = f S z N =± 1 k = cosh βµb e βµbsz k ) ( βµb ) N = cosh m χ m = µ k Sz k N = 1 N 1 Z = f B = µ = µ = 1 N Z ( βb) = 1 N sinh βµb cosh βµb βµb tanh χ = m B = µ B=0 βµ = µ 4 β 1 T 1 Z Tr (e βh k log Z ( βb) 1 cosh βµb B=0 1/T 3 S z j )

1 Ising.1 Ising H =H 0 + H I H 0 =µb k S z k H I = J k S z ks z k+1 N SN+1 z = Sz 1 Z N =Tr {Sk }e βh =Tr S1 =±1/ Tr SN =±1/ exp{ β k ( JS z ks z k+1 + µb (Sz k + S z k+1)} =Tr S1 =±1/ Tr SN =±1/ T S1 S T S S 3 T SN 1 S N T SN S 1 =Tr T N T ab (transfer matrix) (ab) T ab = exp{βjab βµb (a + b)}, a, b = ±1 ( ) T = e K h e K e K e K+h K = βj 4 h = βµb λ ± (λ λ + ) 1 1 U Z N =e βf N = λ N + + λ N = λ N + T =UDU, D = diag(λ +, λ ) ( ) { N λ } 1 + λ + Tr T N =Tr UD N U = Tr UUD N = Tr D N 4

f N f = lim N N = 1 β log λ + det(t λi) =(e K h λ)(e K+h λ) e K =λ λe K cosh h sinh K = 0 λ ± =e K( cosh h ± sinh h + e 4K) f = 1 { ( K + log cosh h + sinh h + e β 4K)}. U = H = 1 Z Tr He βh = β log Z = β (βf) λ ± =e K cosh h ± e K cosh h e K + e K =e K( cosh h ± cosh h 1 + e 4K) =e K( cosh h ± sinh h + e 4K) 5

3 f = 1 log cosh K β E e = lim N N = J 4 tanh K e T = J 4 = J 4 K T K tanh K 1 kt cosh K C J 0.10 0.08 0.06 0.04 0.0 0.5 1.0 1.5.0 T J 1: 3 f = 1 β (K + log(1 + e K ) = 1 β (K + log(e K (e K + e K )) = 1 log cosh K β E N log cosh K β = K log cosh K β K = J 4 tanh K 6

m 4 m = f B = βµ f h = µ sinh h sinh h + e 4K -m/(µ/) 1.0 0.8 h=1 0.6 0.4 h=0.001 h=0.01 h=0.1 0. 0.0 0.5 1.0 1.5.0 T/J : lim lim m = µ h 0 T 0 lim sinh h h 0 sinh h = µ sgn h lim lim m =0 T 0 h 0 4 m = f B = βµ f h = µ sinh h + sinh h cosh h sinh h+e 4K cosh h + sinh h + e 4K = µ sinh h sinh h + e 4K 7

5 χ = m B = µ 4 B=0 = βµ 1 k B T exp( k B T ) m h h=0 χ T 3: 5 m h m = µ (1 + e 4K sinh h) 1/ m h = µ ( 1/)(1 + e 4K sinh h) 3/ ( e 4K ) sinh 3 h cosh h = µ e 4K (1 + e 4K sinh h) 3/ sinh 3 h cosh h = µ e 4K (sinh h + e 4K ) 3/ (sinh h) 3/ sinh 3 h cosh h = µ e 4K (sinh h + e 4K ) 3/ cosh h = µ h=0 ek 8

3 3.1 Ising H =µb i S z i J ij S z i S z j z ( z). i S z j, j ij S = S z j S z j j J ij S z i S z j J i S z i Sj z j ij = Jz S i S z i H H MF H MF =µb Si z J Sz i i =µb eff i S z i S z i B eff =B Jz µ S = B Jz µ m m =µ S ( ) B eff 3. f MF = 1 β log ( cosh βµb eff ) 9

m = f = µ B eff tanh βµb eff = µ tanh βµ ( B Jz µ m) B = 0 m = µ tanh βjz µ m T < TC T > TC m 4: m 0 µ βjz µ βjz 4 1 T < T C k B T C = Jz 4 m (phase transition) (order parameter) m m (Spontaneous symmetry breaking) 10

3.3 (Universality) T C B = 0 T < T C, (T T C ) 6 m = µ βjz tanh µ m µ ( βjz µ m 1 ) (βjz 3 µ m) 3 = β m (βjz)3 m 3 β C 48 m C( β β C 1) 1/ C ( TC T T C ) γ, γ = 1 m (TC-T) 1/ T TC 5: 6 tanh x x 1 3 x3 11

T > T C ( ) B m 7 χ = dm ( ) γ T TC db, γ = 1 B=0 T C χ (TC-T) -1 0 1 TC T 6: 7 m = µ µ 4 βµ Jz tanh (B µ m) β(b Jz µ µ 4 β CB + β m β ( ) C β 1 m =CB β C ( ) 1 T TC m B T C m) = µ 4 βb + Jz 4 βm χ = dm ( ) γ T TC db, γ = 1 B=0 T C 1

β = β C = 4/(Jz) m, B m = µ tanh β ( Cµ Jz (B µ m) = µ tanh βc µ B β ) CJz µ m = µ ( tanh βc µ B m ) µ µ { βc µ B m µ 1 (β C µ 3 B m } ) 3 µ β Cµ 4 B + m 1 m 3 6 µ B m 3 = m δ, δ = 3 β, γ, δ (critical exponents) 13

4 4.1 Legendre f(b) B e Nβ f =Tr e βh m = f B Legendre d f = f B db F =f(b) mb F F(m, B) (m, B) df =d f mdb Bdm ( ) f = B m db Bdm = Bdm F B, F = F(m) m 4. Landau B = 0 B = F m df dm =0 F m F(m) m m F m F(m) =am + bm 4 14

F T < TC T > TC m 7: m F infty b > 0 a { finite T < T C m = 0 T > T C m = { a < 0 a > 0 T < T C T > T C b =const. a =a 0 (T T C ), a 0 > 0 df dm =am + 4bm3 = 0 T < T C m = a b =C T T C, C = a0 b 15