8 1 1., y y (, +1) (-1, ) (, ) (+1, ) y (, -1) 1.1: (,y ) y y ±1 = ± y ±1 = y ± y (, ), = (,y ) (,y ) +1, = ( +, y )=, + 1, = (, y )=, (1.) (1.3) ( )

Similar documents
Evoltion of onentration by Eler method (Dirihlet) Evoltion of onentration by Eler method (Nemann).2 t n =.4n.2 t n =.4n : t n

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

TOP URL 1

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

重力方向に基づくコントローラの向き決定方法

福大紀要 02730816/教育科学 太田 氏家

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

Evolutes and involutes of fronts Masatomo Takahashi Muroran Institute of Technology


4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

( ) ( )

TOP URL 1

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

TOP URL 1

TOP URL 1

all.dvi

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

薄膜結晶成長の基礎2.dvi

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

201711grade1ouyou.pdf

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

EP7000取扱説明書

みどり野43号-P01


KENZOU Karman) x



数学演習:微分方程式

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

main.dvi

PowerPoint Presentation

: , 2.0, 3.0, 2.0, (%) ( 2.

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )


8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

< C93878CBB926E8C9F93A289EF8E9197BF2E786264>

スライド タイトルなし


arxiv: v1(astro-ph.co)

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Untitled

chap9.dvi

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

06佐々木雅哉_4C.indd

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

Note.tex 2008/09/19( )

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

01

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

振動工学に基礎

サポートブック


lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

成長機構

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

エンジョイ北スポーツ

AC-2

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

1 u t = au (finite difference) u t = au Von Neumann

Xray.dvi

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

Ł\”ƒ53_4C

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

2000年度『数学展望 I』講義録

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i


.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

第1章 微分方程式と近似解法

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

Gmech08.dvi

構造と連続体の力学基礎

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +


1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

all.dvi

Transcription:

7 1 () Brgers 1.1 a + b y + c y + d + e + f + g =0. (1.1) y b 4ac > 0 t c =0 b 4ac =0 t = κ b 4ac < 0 + y =4πGρ

8 1 1., y y (, +1) (-1, ) (, ) (+1, ) y (, -1) 1.1: (,y ) y y ±1 = ± y ±1 = y ± y (, ), = (,y ) (,y ) +1, = ( +, y )=, + 1, = (, y )=, (1.) (1.3) ( ) +! ) ( +1, 1, = +! ( ) ( ) + 3 3! 3 3! ( 3 ) +... (1.) 3 ( 3 3 ) +... (1.3) ( ) + O( 3 ) (1.4) ( ) = +1, 1, + O( ) (1.5) (, ) ( / ) ( ) ( ) = +1, 1, (1.6)

1.3. 9 1 ( ) ( ) (1.) (1.3) = +1,, =, 1, () (1.7) () (1.8) ( +1, + 1, =, + ) + O( 4 ) (1.9) ( ) = +1,, + 1, + O( ) (1.10) ( / ) ( ) = +1,, + 1, (1.11) ( ) y =,+1, +, 1 y. (1.1) 1.3 1.3.1 t + c = 0 (1.13) c c>0 c (1.13) (, t) =( ct, 0) (1.14)

10 1 t = 0 t > 0 c 1 c 1 1.: 1 t>0 t =0 ct 1. 0 = 1 <0 = =0 t>0 1.3. FTCS 1 (1.13) t n t t n+1 = t n + t n = (,t n ) n + c n +1 n 1 = 0 (1.15) t FTCS (Forward n Tme and Centered Dfference n Space) = n 1 ν(n +1 n 1 ) (1.16) ν ν c t (1.17) 1.16 t n t n+1 = t n + t t n 1 (t n+1 ) FTCS 1.3 t n+1 t n 1 1. ( )

1.3. 11 t bondary n+1 n -1 +1 1.3: FTCS. (t =0) () 3. t t end (a) t ( ) FTCS (1.16) (b) ( ) (c) t 3 3 1 1 0 0-1 40 45 50 55 60-1 0 0 40 60 80 100 1.4: FTCS =1,..., 50 =1 =51,..., 100 =0 ν = c t/ =0.5 1 3 1 50 100 FTCS 1.4

1 1 1.3.3 FTCS Von Nemann FTCS 1 1.4 n = cos(θ) (1.18) (1.16) θ k θ = k θ = π n 1.5 1 θ = π/3 6 1 θ = π θ = π/3 =0 1 3 4 =0 1 3 4 5 6 1.5: n θ = π/3 = cos(θ) : θ = π = cos(θ)+ νsnθsn(θ) (1.19) n+ = (1 ν sn θ)cos(θ)+νsnθsn(θ) (1.0) = Re [ (1 νsnθ) e θ] (1.1) Re n+k = Re [ (1 νsnθ) k e θ] (1.) ( ) (1.18)

1.3. 13 n = gn e θ (1.3) g 1 g 1 Von Nemann n = gn ep(θ) FTCS g = 1 1 ν(eθ e θ ) (1.4) = 1 νsnθ (1.5) g =1+ν sn θ 1 (1.6) θ =0 FTCS FTCS t n+1 = t n + t ±1 = ± = n + t t + 1 t t +... (1.7) n +1 = n + + 1 + 1 3 6 3 3 +... (1.8) n 1 = n + 1 1 3 6 3 3 +... (1.9) FTCS (1.7) (1.8) (1.9) n = 1 ν(n +1 n 1 ) (1.30) t t + 1 ( t t = ν + 1 3 ) 6 3 3 +... (1.31) t + c = 1 t t c 3 6 3 +... (1.3)

14 1 t = c t (1.33) = c (1.34) t + c = c t c 6 3 3 +... (1.35) 1 FTCS 1.3.4 La-Fredrch FTCS n (n +1 + n 1 )/ n = g n ep(θ) g = 1 (n +1 + n 1) ν (n +1 n 1) (1.36) g = 1 (eθ + e θ ) 1 (eθ e θ ) (1.37) = cosθ νsnθ (1.38) g = cos θ + ν sn θ (1.39) 1.6 g θ (g, θ) La-Fredrch ν = c t/ ν 1 Corant, Fredrch, Lewy (CFL ) (1.36) = 1 ν n +1 + 1+ν n 1 (1.40) ν 1 t = t n+1 n 1 +1 n +1 t = t n 1

1.3. 15 ν = 1 ν=0.5 g -1 θ 1 1.6: La-Fredrch t bondary n+1 n c t -1 +1 1.7: La-Fredrch ν<1 ν >1 1.7 La-Fredrch t = t n+1 t = t n ν = c t/ <1 ν>1 c t < t n 1 n +1 t > / c 1 +1 1.8 La-Fredrch La-Fredrch 1.3.5 1 1.9 1

16 1 3 1 50 100 0-1 0 0 40 60 80 100 1.8: La-Fredrch ν =0.5 50 100 t bondary c > 0 n+1 n c t -1 +1-1 +1 1.9: 1 1 c >0 n t + c n n 1 = 0 (1.41) = n c t (n n 1 ) (1.4) 1.9 1 t n+1 t n t n+1 g = 1 ν(1 e θ ) (1.43)

1.3. 17 = (1 ν + νcosθ) νsnθ (1.44) g = (1 ν + νcosθ) + ν sn θ (1.45) = 1 ν(1 ν)(1 cosθ) (1.46) 0 ν 1 θ g 1 1.4 =(1 ν) n + νn 1. (1.47) 0 ν 1 t = t n+1 t = t n 1.9 ( c t, t n ) n 1 n 3 3 1 1 50 100 16 3 0 0-1 0 0 40 60 80 100-1 0 0 40 60 80 100 1.10: 1 ν =0.5 50 100 ν =0.80 16 3 1.10 ν 1,0.75,0.5 1 g θ ( g,θ) 1 (1.4) 1 t + c = 1 c (1 ν) 1 6 c( ) (ν 3ν +1) 3 +... (1.48) 3

18 1 1.3.6 La-Wendroff La-Wendroff = n + t t + 1 t t + O( t3 ) (1.49) 3 / t = c / / t = c / = n c t + 1 c t + O( t3 ) (1.50) / / = n 1 c tn +1 n 1 + 1 ( ) t c ( n +1 n + n 1) (1.51) La-Wendroff La-Wendroff La-Wendroff von Nemann g = 1 ν (eθ e θ )+ ν (eθ +e θ ) (1.5) = 1 νsnθ + ν cosθ ν (1.53) g = [1 ν (1 cosθ)] + ν sn θ (1.54) = 1 ν (1 ν )(1 cosθ) (1.55) ν 1 θ g 1 1 La-Wendroff La-Wendroff / +1/ = n +1 + n = n c t 1 c t (n +1 n ) (1.56) (n+1/ +1/ n+1/ 1/ ) (1.57) 1.11 1.1 La-Wendroff 1 La-Wendroff Godnov 1 / t + c / =0

1.3. 19 t bondary n+1 n+1/ n -1 +1 1.11: La-Wendroff t n 1 +1 t n+1/ 1/ +1/ t n+1 = k a k n +k (1.58) t n (, t n ) t n+1 (, t n+1 ) 0 ν 1 n 1 n n 1 n n +1 +1 Godnov (1994) κ ũ n+1 = + κ t (n +1 n + n 1) (1.59) κ Q v κ +1/ = Q v n +1 n (1.60)

0 1 3 3 1 1 50 100 16 3 0 0-1 0 0 40 60 80 100-1 0 0 40 60 80 100 1.1: La-Wendroff ν =0.5 50 100 ν =0.80 16 3 1.4 1 t + c = 0 (1.61) t + f = 0 (1.6) f = c (1.63) (1.6) 1.13 ( 1/ << +1/ ) (1.6) = 1/ = +1/ +1/ d + f( +1/ ) f( 1/ )=0. (1.64) t 1/ n = +1/ 1/ (, t n )d (1.65) ±1/ f ±1/ = n t (f n +1/ f n 1/) (1.66)

1.5. Brgers 1 f -1/ f +1/ -1 +1 1.13: (1.66) f n ±1/ f n ±1/ FTCS La-Fredrch f n +1/ = 1 (f n +1 + f n ) (1.67) f n +1/ = 1 [ (1 1 ν )f +1 n +(1+ 1 ] ν )f n (1.68) Upwnd () f +1/ n = 1 [ (f n +1 + f n ) c (n +1 n )] (1.69) c >0 f n +1/ = f n c<0 f +1/ = f n +1 La-Wendroff f +1/ n = 1 [ ] (1 ν)f n +1 +(1+ν)f n (1.70) 1.5 Brgers c Brgers t + = 0 (1.71)

1 d/dt = / t + / d dt = 0 (1.7) = 1.14 + 1.14: Brgers 1.01 0 16 3 48-1.01 48 3 16 0 1.00-1.00 0.99-0.99-40 -0 0 0 40 60 80 100-40 -0 0 0 40 60 80 100 1.15: Brgers >0 <0 t/ =0.8 Brgers

1.5. Brgers 3 t + ( ) = 0 (1.73) f() f() = / c c>0 f n +1/ = f n +1/ ( (t)+ +1 (t))/ +1 (t)+ (t) > 0 f n +1/ = f n = (t) / +1 (t)+ (t) 0 f n +1/ = f n +1 = +1 (t) / 1.15 () =1+ɛsn(k) (ɛ =0.01, 0 k π) Brgers 1.15 1 c =1 1.15 1 Brgers 1.16 () =1+0.1sn(k) Brgers / 1.15 1.10 0 3 64 96 18 160 1.05 1.00 0.95 0.90 0.85 0 50 100 150 00 1.16: () =1+0.1sn(k) Brgers t/ =0.8

4 1 1.6 Brgers Godnov La-Wendroff La-Wendroff f n +1/ = c[n + 1 (1 ν)(n +1 n )] (1.74) 1 c>0 f n +1/ = c La- Wendroff 1 La-Wendroff f n +1/ = c[ n + 1 (1 ν)b +1/( n +1 n )] (1.75) B +1/ (1.75) (1.66) n n 1 n = ν[1 1 (1 ν)b 1/]+ 1 ν(1 ν)b +1/ r (1.76) r n n 1 n +1 n n -1 (1.77) n+1 n 1.17: 1.17 n n 1 (1.76)

1.6. 5 0 n+1 n n 1 n (1.76) 1 (1.78) ν B 1/ B +1/ r 1 ν (1.79) CFL 0 ν 1 B 1/ B +1/ r (1.80) 0 B +1/ (1.81) 0 B +1/ r (1.8) 1.18 r <0 B +1/ =0 B +1/ B = r 1 LW mnmod O 1 r 1.18: B +1/ (r) LW La-Wendroff mnmod mnmod La-Wendroff B +1/ =1( LW) r <1/

6 1 mnmod ( mnmod) 0 (r<0) mnmod(r) = r (0 r 1) 1 (r>1) (1.83) 1.7 TVD 1 U = d d. (1.84) d du/dt =0 Total Varaton (TV) TV( n ) n +1 n (1.85) Total Varaton TV( ) TV( n ) (1.86) Total Varaton Dmnshng (TVD) TVD 1.8 T t = κ T B t = η B

1.8. 7 1 t =0 (, t) (, 0) t (> 0) (, t) t = κ (1.87) κ t = 0 t > 0 1.19: (eplct ) 1 (1.87) t n t t n+1 = t n + t (FTCS n = (,t n ) n t (1.88) = κ n +1 n + n 1 (1.88) = n + κ t (n +1 n + n 1 ) (1.89) t n t n+1 = t n + t t n 1 (t n+1 ) (

8 1 Von Nemann FTCS n = g n ep(θ) FTCS g n+1 e θ = g n e θ + κ t gn [e (+1)θ e θ + e ( 1)θ ]. (1.90) g =1 κ t (1 cosθ). (1.91) g 1 1 1 κ t (1 cosθ) 1. (1.9) 0 κ t (1 cosθ) =κ t θ sn 1. (1.93) θ ( ) 0 κ t 1. (1.94) FTCS 1 t t 1/4 (mplct ) t n+1 (mplct) eplct Crank-Ncolson λ n t = κ [λ n+1 +1 + 1 +(1 λ) n +1 n + ] n 1 (1.95) A = b( n ). (1.96) 1. A b

1.8. 9. Von Nemann λ >1/ κ t/ > 0 t Crank-Ncolson (1) (1994) () (000) (3) Nmercal Comptaton of Internal and Eternal Flows, C. Hrsch, John Wley & Sons, 1990 (1)